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Abstract

aderrors is a fortran 2008 library for error analysis of MC data. It uses the Γ-
method together with techniques of automatic differentiation to provide a robust,
efficient, portable, transparent and open source module for the analysis of Monte
Carlo data [1].
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1 Features

• Exact linear error propagation, even in iterative algorithms (i.e. error propagation
in fit parameters) thanks to Automatic Differentiation.
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• Handles data from any number of ensembles (i.e. simulations with different
parameters).

• Support for replicas (i.e. several runs with the same simulation parameters).

• Standalone portable implementation without any external dependencies.

• Fast computation of autocorrelation functions with the FFT package [2] (included
in the distribution).

• Exact determination of gradients and Hessians of arbitrary functions.

2 Installing and linking with the library

2.1 Installing

1. Download or clone the repository at [1].

2. Edit the Makefile in the build directory. Change according to your needs. Usually
only the compiler command/options (variables FC and FOPT) have to be changed.

3. Compile the library with gmake.

4. Optionally build/run the test codes with gmake test . Executabes will be placed
in the test directory.

5. If preferred, move the contents of the include and lib directories somewhere else.

2.2 Using the library

• Compile your programs with -I <dir>/include.

• Link your programs with the -L <dir>/lib and -laderr options.

3 Example usage

This is a collection of simple examples on the usage of the module aderrors. Note that
the basic data type is uwreal, that is able to handle MC histories and data with errors.
The error is determined by calling the method uwerr on the data type.

In these examples we use the module simulator (test/simulator.f90) to generate
autocorrelated data.

3.1 Simple analysis of MC data

Estimating the value and statistical error of a quantity given some MC data is really very
simple. The following example is available in test/simple.f90.

1 program simple

2

3 use numtypes

4 use aderrors

5 use simulator

6
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7 implicit none

8

9 integer, parameter :: nd = 20000

10 type (uwreal) :: x

11 real (kind=DP) :: data_x(nd), err, ti, tau(5), lam(5)

12

13

14 ! Fill array data_x(:) with autocorrelated

15 ! data from the module simulator.

16 tau = (/1.0_DP, 3.0_DP, 4.0_DP, 5.0_DP, 7.34_DP/)

17 lam = (/1.00_DP, 0.87_DP, 1.23_DP, 0.56_DP, 0.87_DP/)

18

19 call gen_series(data_x, err, ti, tau, lam, 0.3_DP)

20

21 ! Load data_x(:) measurements in variable x. Use

22 ! default settings (Stau=4, texp=0, 1 replica)

23 x = data_x

24

25 ! Perform error analysis (optimal window)

26 call x%uwerr()

27

28 ! Print results and compare with exact values

29 write(*,’(1A,1I6,1A)’)’** Measurements: ’, nd, ’ ** ’

30 write(*,100)’ - Gamma-method: ’, x%value(), " +/- ", x%error(), ’( tauint: ’, &

31 x%taui(1), " +/- ", x%dtaui(1), ’)’

32 write(*,100)’ - Exact: ’, 0.3_DP, " +/- ", err, ’( tauint: ’, ti, " )"

33

34 100 FORMAT((2X,1A,1F8.5,1A,1F7.5,5X,1A,1F0.2,1A,1F7.5,1A))

35

36 stop

37 end program simple

Note that we only need to load the MC data in a uwreal data type and call uwerr() to
determine the mean value and error.

3.2 Complicated derived observables

Imagine that we have the MC data of some observable X. We are interested in a compli-
cated quantity

f(〈X〉) =
sin(〈X〉) cos(〈X〉2)

1 + 〈X〉4
. (1)

The question is what is the mean value and the error in f(〈X〉)? The example shows how
to do such a computations (test/derived.f90)

1 program derived

2

3 use ISO_FORTRAN_ENV, Only : error_unit, output_unit

4 use numtypes

5 use aderrors

6 use simulator
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7

8 implicit none

9

10 integer, parameter :: nd = 20000

11 type (uwreal) :: x, y

12 real (kind=DP) :: data_x(nd), err, ti, tau(5), lam(5)

13

14

15 ! Fill arrays data_x(:) with autocorrelated

16 ! data from the module simulator.

17 tau = (/1.0_DP, 3.0_DP, 4.0_DP, 5.0_DP, 7.34_DP/)

18 lam = (/1.00_DP, 0.87_DP, 1.23_DP, 0.56_DP, 0.87_DP/)

19

20 call gen_series(data_x, err, ti, tau, lam, 0.3_DP)

21

22 ! Load data_x(:) measurements in variable x. Use

23 ! default settings (Stau=4, texp=0, 1 replica)

24 x = data_x

25

26 ! Exact, transparent error propagation

27 y = sin(x)*cos(x**2)/(1.0_DP+x**4)

28 ! Perform error analysis (optimal window)

29 call y%uwerr()

30

31 ! Print results

32 write(*,’(1A,1I6,1A)’)’** Measurements: ’, nd, ’ ** ’

33 write(*,100)’ - Gamma-method: ’, y%value(), " +/- ", y%error(), ’( tauint: ’, &

34 y%taui(1), " +/- ", y%dtaui(1), ’)’

35

36 100 FORMAT((2X,1A,1F8.5,1A,1F7.5,5X,1A,1F0.2,1A,1F7.5,1A))

37

38

39 stop

40 end program derived

This computation requires to determine the derivative of the function f(x). This deriva-
tive is determined using automatic differentiation [3]. This method avoids the numerical
evaluation of the derivative by some variant of the finite difference approach, or by some
stochastic evaluation of the derivative (as is done in jacknife/bootstrap). Making a long
story short, the derivative of f(x) is determined exactly (up to machine precision).

3.3 A calculator with uncertainties

The module aderrors does not only handle full MC histories, but also regular variables
with errors. Consider the next example (test/calculator.f90)

1 program calculator

2

3 use numtypes

4 use aderrors
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5

6 implicit none

7

8 type (uwreal) :: x, y, z, t

9

10 x = (/1.223_DP, 0.012_DP/) ! x = 1.223 +/- 0.012

11 y = sin(2.0_DP*x)

12 z = 1.0_DP + 2.0_DP * sin(x)*cos(x)

13 t = z - y

14 call t%uwerr()

15 write(*,’(1A,1F18.16,1A,1F18.16)’)’Exactly one: ’, &

16 t%value(), " +/- ", t%error() ! 1.0 +/- 0.0

17

18 stop

19 end program calculator

Note that not only the mean value of t is one, but also the error is zero (i.e. the correlation
between different variables is correctly taken into account).

This is a trivial example, but the module aderrors handles correctly and automati-
cally the correlations between different observables from the same MC chain (i.e. proton
and pion masses measured in a ensemble).

3.4 Combining MC chains

In many cases we have to estimate quantities that depend on several MC ensembles.
This case is handled transparently by just identifying the ensemble where each primary
observable was measured with an integer ID.

The following example (test/multi.f90) combines in a derived observable data from
different ensembles and also a simple quantity with uncertainties (these are treated as
independent ensembles).

1 program multi

2

3 use ISO_FORTRAN_ENV, Only : error_unit, output_unit

4 use numtypes

5 use aderrors

6 use simulator

7

8 implicit none

9

10 integer, parameter :: nd = 200000

11 real (kind=DP) :: data_x(nd), data_y(nd), err, ti, tau(5), lam(5), texp

12 type (uwreal) :: x, y, z, t

13 integer :: i

14

15 ! Fill array data_x(:) with autocorrelated data

16 ! from the module simulator. Save slowest mode in texp

17 tau = (/1.0_DP, 3.0_DP, 4.0_DP, 5.0_DP, 73.4_DP/)

18 texp = maxval(tau)

19 lam = (/1.00_DP, 0.87_DP, 1.23_DP, 0.56_DP, 0.087_DP/)

5



20 call gen_series(data_x, err, ti, tau, lam, 0.3_DP)

21

22

23 ! Fill array data_y(:) with autocorrelated

24 ! data from the module simulator.

25 tau = (/1.4_DP, 2.4_DP, 1.8_DP, 5.1_DP, 7.14_DP/)

26 lam = (/2.00_DP, 0.85_DP, 1.33_DP, 2.56_DP, 1.87_DP/)

27 call gen_series(data_y, err, ti, tau, lam, 0.3_DP)

28

29 ! Load data_x(:) in variable x and set ensemble id to 1.

30 ! Set exponential autocorrelation time to add tail

31 x = data_x

32 call x%set_id(1)

33 call x%set_texp(texp)

34 ! Set name of ensemble 1

35 i = aderr_new_id("Ensemble X", 1)

36

37

38 ! Load data_y(:) in variable x and set ensemble id to 2

39 y = data_y

40 call y%set_id(2)

41 ! Set name of ensemble 2

42 i = aderr_new_id("Ensemble Y", 2)

43

44 ! Observable z is just a variable with error.

45 ! Treat as another ensemble with id 3

46 z = (/3.23_DP, 0.23_DP/) ! z = 3.23(23)

47 call z%set_id(3)

48 ! Set name of ensemble

49 i = aderr_new_id("Variable z with errors", 3)

50

51 ! Exact, transparent error propagation.

52 t = z*x/y - y/(z*x)

53

54 ! Use Stau=1.75 for ensemble with ID 2

55 call t%set_stau(1.75_DP,2)

56 ! Error analysis (optimal window, tails, ...)

57 call t%uwerr()

58

59 write(*,*)"Result: ", t%value(), " +/- ", t%error()

60 do i = 1, t%neid()

61 write(*,200)trim(t%error_name(i)), &

62 ’ contribution to error: ’, t%error_src(i)*100., ’%’

63 end do

64

65 200 FORMAT(1A22,1A,5X,1F6.2,1A)

66

67

68 stop

69 end program multi
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This code produces the flowing output

Result: 2.6486091631414594 +/- 0.38165436636532096

Variable z with errors contribution to error: 38.34%

Ensemble X contribution to error: 10.64%

Ensemble Y contribution to error: 51.01%

Practical lessons from this example:

• The routine aderr new id, stores in a database the ID of a MC chain and an iden-
tification string.

• Independent ensembles are identified by assigning to the primary observables an
integer ensemble ID.

• By default all observables are assumed to derive from a common ensemble with
id=-1.

• Variables with errors can be combined with MC measurements. One just has to
assign an ensemble ID to these variables as if they were a new ensemble.

3.5 Error propagation in iterative algorithms

We know some function
f(x) = a cos(b sin(x)) (2)

where
a = 0.800(56), b = 1.30(10) . (3)

are observables measured on different ensembles. We want to determine the fixed point of
f (i.e. the value x such that f(x) = x) with uncertainty. A typical procedure is to use
the newton method to find a root of f(x)−x. This is implemented in the most naive way
(see test/newton.f90)

1 program newton

2

3 use numtypes

4 use aderrors

5

6 implicit none

7

8 type (uwreal) :: xant, xnew, val, der, a, b

9 integer :: id, i

10

11 a = (/ 0.8_DP, 0.056_DP /)

12 id = aderr_new_id("Variable a", 100)

13 call a%set_id(id)

14

15 b = (/ 1.3_DP, 0.10_DP /)

16 id = aderr_new_id("Variable b", 222)

17 call b%set_id(id)

18

7



19 xnew = (/0.50_DP, 10.0_DP/)

20 id = aderr_new_id("Initial condition", 3674)

21 call xnew%set_id(id)

22

23 ! Newton’s method. Iterate until root does not change

24 do

25 xant = xnew

26 call fnew(xant, val, der)

27 xnew = xant - val/der

28 if (abs(xnew%value()-xant%value()).lt.1.0E-10_DP) exit

29 end do

30

31 call xnew%uwerr()

32 write(*,*)"Fixed point at: ", &

33 xnew%value(), " +/- ", xnew%error()

34 do i = 1, xnew%neid()

35 write(*,200)trim(xnew%error_name(i)), &

36 ’ contribution to error: ’, xnew%error_src(i)*100., ’%’

37 end do

38

39 200 FORMAT(1A20,1A,5X,1F6.2,1A)

40

41 stop

42 contains

43 subroutine fnew(x, f, d)

44 ! Returns the value (f) an derivative (d) of

45 ! the function f(x)-x

46

47 type (uwreal), intent (in) :: x

48 type (uwreal), intent (out) :: f, d

49

50 f = a*cos(b*sin(x)) - x

51 d = -a*b*sin(b*sin(x)) * cos(x) - 1.0_DP

52

53 return

54 end subroutine fnew

55 end program newton

Note that the implementation of Newton’s method (lines 23-29) is exactly the same as
what one would write without having to deal with uncertainties.

In this case, even the “derivative of the Newton Method” (i.e. how much the position
of the root changes when changing the parameters a and b in eq. (2)), is determined
“exactly” thanks to the techniques of automatic diferentiation. In particular running this
code gives as output

Fixed point at: 0.59617758342692495 +/- 3.2638835812954813E-002

Initial condition contribution to error: 0.00%

Variable a contribution to error: 66.00%

Variable b contribution to error: 34.00%

The contribution to the error in the position of the root due to the error of the initial
condition is zero. That is, the techniques of automatic differentiation have been able
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to pick the fact that the result of the newton method does not depend on the initial
condition1.

Practical lessons from this example:

• id’s of MC chains do not need to be consecutive. One can “encode” β = 6.12,
κ = 0.135734 in id = 612135734, for example.

3.6 Compute derivatives of arbitrary functions

Let’s look with more detail the previous example. We are going to wrap the newton
method into a function that has three inputs: the value of a, b and the initial condition.
The module aderrors is able to compute derivatives of arbitrary functions (including
complex functions with loops). We have to use the routine aderr grad as the following
example shows (test/newton grad.f90)

1 program newton_grad

2

3 use ISO_FORTRAN_ENV, Only : error_unit, output_unit

4 use numtypes

5 use aderrors

6

7 implicit none

8

9 type (uwreal) :: pa, pb, xini, a, b

10 real (kind=DP) :: grad(3)

11 integer :: id

12

13 pa = (/ 0.8_DP, 0.056_DP /)

14 id = aderr_new_id("Variable a", 100)

15 call pa%set_id(id)

16

17 pb = (/ 1.3_DP, 0.10_DP /)

18 id = aderr_new_id("Variable b", 222)

19 call pb%set_id(id)

20

21 xini = (/0.50_DP, 10.0_DP/)

22 id = aderr_new_id("Initial condition", 3674)

23 call xini%set_id(id)

24

25 call aderr_grad(grad, newton, [pa, pb, xini])

26 write(*,*)’derivative of newton method respect a: ’, grad(1)

27 write(*,*)’derivative of newton method respect b: ’, grad(2)

28 write(*,*)’derivative of newton method respect xini: ’, grad(3)

29

30 stop

31 contains

32

33 function newton(x)

34 type (uwreal) :: newton

1Note that initially we set an absurd error to the initial condition xnew = 0.50 +/- 10.0
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35 type (uwreal), intent (in) :: x(:)

36

37 type (uwreal) :: xant, xnew, val, der

38

39 a = x(1)

40 b = x(2)

41 xnew = x(3)

42 do

43 xant = xnew

44 call fnew(xant, val, der)

45 xnew = xant - val/der

46 if (abs(xnew%value()-xant%value()).lt.1.0E-10_DP) exit

47 end do

48

49 newton = xnew

50

51 return

52 end function newton

53

54 subroutine fnew(x, f, d)

55 ! Returns the value (f) an derivative (d) of

56 ! the function f(x)-x

57

58 type (uwreal), intent (in) :: x

59 type (uwreal), intent (out) :: f, d

60

61 f = a*cos(b*sin(x)) - x

62 d = -a*b*sin(b*sin(x)) * cos(x) - 1.0_DP

63

64 return

65 end subroutine fnew

66 end program newton_grad

The output of the program is

derivative of newton method respect a: 0.47350138707933248

derivative of newton method respect b: -0.19031322284115804

derivative of newton method respect xini: -2.5243548967072378E-028

3.7 Computing the Hessian of arbitrary functions

The module aderrors is also able to determine the Hessian of any function to machine
precision (even iterative routines). This is useful for error propagation in fits. In this
example (test/hessian.f90) we just compute the Hessian of the function

f(x1, x2) = a(x1 − b+ ax31)
2 + b sin(x2 − a+ b2) + x1x2 , (4)

where a, b are some parameters with values

a = 0.800 , b = 1.30 , (5)

and x1, x2 will be taken as

x1 ≈ −0.4319 . . . , x2 ≈ 4.1610 . . . . (6)
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(these are the values that minimize f(x1, x2) for the values of a, b given in equation (5)).
Note that the code returns not only the derivatives with respect to x1, x2, but also with
respect to a, b.

1 program hessian

2

3 use ISO_FORTRAN_ENV, Only : error_unit, output_unit

4 use numtypes

5 use constants

6 use aderrors

7

8 implicit none

9

10 type (uwreal) :: va(4)

11 real (kind=DP) :: hess(4,4)

12 integer :: i, j

13

14 ! X1 AND X2 AT THE MINIMA

15 va(1) = (/ -0.43191853747977416_DP, 0.0_DP/)

16 va(2) = (/ 4.16107180379317750_DP, 0.0_DP/)

17

18 ! CENTRAL VALUES OF (a,b) (ERRORS NOT NEEDED)

19 va(3) = (/ 0.8_DP, 0.0_DP/)

20 va(4) = (/ 1.3_DP, 0.0_DP/)

21

22 ! COMPUTE THE HESSIAN

23 call aderr_hess(hess, fmulti, va)

24 write(*,*)’## HESSIAN ##’

25 do i = 1, 4

26 write(*,’(100ES15.6)’)(hess(i,j), j=1, 4)

27 end do

28 write(*,*)’## ##’

29

30 contains

31 function fmulti(x)

32 type (uwreal) :: fmulti

33 type (uwreal), intent (in) :: x(:)

34

35 fmulti = x(3)*(x(1)-x(4) + x(3)*x(1)**3)**2 + x(4)*sin(x(2) - x(3) + x(4)**2) &

36 + x(1)*x(2)

37

38 return

39 end function fmulti

40 end program hessian

This little code produces, as output

## HESSIAN ##

9.312301E+00 1.000000E+00 -6.996564E+00 -2.316366E+00

1.000000E+00 1.226151E+00 -1.226151E+00 3.520238E+00
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-6.996564E+00 -1.226151E+00 1.815519E+00 2.014424E-01

-2.316366E+00 3.520238E+00 2.014424E-01 1.248029E+01

## ##

4 Documentation

4.1 type (uwreal)

4.1.1 Components

The data type has no externally accessible components.

4.1.2 Methods that operate on all uwreal types

We can operate on any uwreal data type with the following methods.

value(): Function. Returns (double precision) the estimate of the observable.

error(): Function. Returns (double precision) the error on the estimate of the ob-
servable.

derror(): Function. Returns (double precision) the statistical error of the error on
the estimate of the observable.

neid(): Function. Returns (integer) the number of ensembles contributing to the error.

eid(n): Function. Returns (integer) the ensemble ID number n contributing to the
error.

taui(n): Function. Returns (double precision) τint corresponding to ensemble number
n contributing to the error.

dtaui(n): Function. Returns (double precision) δτint corresponding to ensemble num-
ber n contributing to the error.

window(n): Function. Returns (integer) the summation window chosen for ensemble ID
number n.

This example shows the calls to the different accesible components

1 type (uwreal) :: obs

2

3 ! Always call the method uwerr()

4 ! to perform error analysis

5 call obs%uwerr()

6 write(*,*)’Observable: ’, obs%value(), " +/- ", obs%error(), &

7 "error of the error: ", obs%derror()

8 do i = 1, obs%neid()

9 write(*,*)’Ensemble ’, obs%eid(i), &

10 ’ tau int: ’, obs%taui(i), " +/- ", obs%dtaui(i), &

11 " (window: ", obs%window(i), ")"

12 end do
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uwerr(): Subroutine. Performs the error analysis. Only after calling this method we
can expect that error(), derror(), taui(n), dtaui(n), window(n) will return
the proper values.

error src(n): Function. Returns the contribution to the sum of errors in quadrature
of the nth MC chain contributing to the error.

error name(n): Function. Returns the name stored in the database that corresponds to
the nth MC chain contributing to the error.

This code snippet shows the call to these methods.

1 ...

2 type (uwreal) :: z

3

4 ! Perform error analysis (tails, optimal window,...)

5 call z%uwerr()

6

7 write(*,*)’Value: ’, z%value(), " +/- ", z%error()

8 do i = 1, z%neid()

9 write(*,’(3X,1A,1X,1A,3X,1F0.2,"%")’)&

10 ’Contribution to error from’, z%error_name(i), &

11 100.0_DP*z%error_src(i)

12 end do

set stau(x, [id]): Set the parameter Sτ to the ensemble with ID id to x. If id is not
present, the default value (1) is used.

set dsig(x, [id]): Set where to attach the tail for analysis with τexp 6= 0 to x. This
is measured in units of error in the normalized autocorrelation function. (i.e. x=2.0
attach the tail at a point where the value of ρ(t) is two times larger than the error).

write bdio(fb, uid): Subroutine. Saves the observable in a BDIO record with user
identification uid. fb must be of type BDIO and in write state.

read bdio(fb): Subroutine. Reads the observable from a BDIO record. fb must be of
type BDIO, in read state, and positioned in the record that one want’s to read.

print hist([ifn]): Subroutine. Prints the history of the observable as well as the nor-
malized autocorrelation functions and integrated autocorrelation times with errors.
This is simple text that can be processed to produce plots. Note that for derived
observables there is a history, a normalized autocorrelation function and integrated
autocorrelation time for each MC ID.

This example shows the call to the print hist method.

1 type (uwreal) :: z

2 integer :: iflog

3

4 call z%uwerr()

5

6 open(newunit=iflog, file="sal.out")

7 call z%print_hist(iflog)

8 close(iflog)
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4.1.3 Methods that operate on primary observables

These methods operate only on primary observables2.

set id(n): Set the ID of the MC chain to n. Different ID’s are considered statistically
independent data, while the same ID is treated in a fully correlated way. (Default
is -1)

set replica(ivrep): Set the replica vector to ivrep(:). This is an integer vector with
the size of each replica. Example:

1 ! Load 1000 measurements

2 obs = data(1:1000)

3

4 ! In three replicas, two of 100 measurements, one

5 ! of 800 measurements

6 call obs%set_replica((/100, 100, 800/))

Note that the sum over the replica vector has to match the number of measurements.
(Default is that all measurements belong to the same replica).

set texp(tau): Set τexp to tau. This is used to add a tail to the autocorrelation function.
(Default is no tail)

IMPORTANT: This code assumes that observables measured in the same ensemble
have been measured in exactly the same set of configurations. Therefore all primary
observables with the same ensemble ID must have the same replica vector.

Similarly, τexp is a property of the simulation, and therefore must be the same on
all primary observables measured on the same ensemble ID. Where to attach the
tail for each observable is controlled with the routine set dsig.

The replica vector, τexp and ensembles ID’s are inherited in derived observables from
the primary ones. This is the reason why they cannot be called on derived observables.

4.2 Externally accessible functions

4.2.1 aderr new id(name, [id])

Stores name in the database and associate it with ID id. If id is not present use a new
unique id.

name: Type character (len=*) (input). Name associated with ID id.

id: Type integer (input). If present ID of the MC chain to be associated with name.

Output: Type integer. Returns the ID associated with name (if id is present, this is it).

4.2.2 aderr id exists(id)

Checks if id is associated with a name in the database.

id: Type integer (input). id to check if exists in the database.

Output: Type logical. T if the ID is associated with a name in the database. F

otherwise.
2A primary observable is an observable that depend on just one MC id. These are usually the mea-

surements
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4.3 Externally accessible subroutines

4.3.1 adset default stau(x)

Set the default value for the parameter Sτ to x (double precision). This value affects the
default settings for all primary and derived observables. (Default value is Sτ = 4).

4.3.2 adset default dsig(x)

Set the default value for the parameter that decides where to attach the tail to the auto-
correlation function to x (double precision). This value affects the default settings for all
primary and derived observables with τexp 6= 0. (Default value is 1.5).

4.3.3 aderr list ids([ifp])

Prints the ID and the name of the ID stored in the database in file unit ifp if present, to
standard output otherwise.

ifp: Type integer (input).

4.3.4 addobs(x, a, fn)

This routine propagates the error from the variables a trough the function fn(a) into x.
This has to be understood as in

x = fn(a) (7)

The routine comes in two flavors: single variable or multiple variables. In the single
variable version x is a scalar and fn is a function with the following interface

1 interface

2 function fn(a)

3 type (uwreal) :: fn

4 type (uwreal), intent (in) :: a(:)

5 end function fn

6 end interface

The multiple variable version x(:) is a one dimensional array and fn has the following
interface

1 interface

2 subroutine fn(r,a)

3 USE numtypes

4 import :: uwreal

5 type (uwreal), intent (inout) :: r(:)

6 type (uwreal), intent (in) :: a(:)

7 end subroutine fn

8 end interface

where r(:) has to be understood as the result of the function.

x/x(:): Type uwreal (input-output). The result of the error propagation.

a(:): Type uwreal (input). The input variables.

fn: The routine where errors need to be propagated.
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4.3.5 uwdobs(x, a, fn)

This routine is completely analogous to addobs, except that the differentiation is per-
formed by finite differences (not with AD techniques). This is mainly legacy code or
for situations where one has a black-box function that does not admit type uwreal as
input/output and errors need to be propagated.

This routine propagates the error from the variables a trough the function fn(a) into
x. This has to be understood as in

x = fn(a) (8)

The routine comes in two flavors: single variable or multiple variables. In the single
variable version x is a scalar and fn is a function with the following interface

1 interface

2 function fn(a)

3 real (kind=DP) :: fn

4 real (kind=DP), intent (in) :: a(:)

5 end function fn

6 end interface

The multiple variable version x(:) is a one dimensional array and fn has the following
interface

1 interface

2 subroutine fn(r,a)

3 USE numtypes

4 import :: uwreal

5 real (kind=DP), intent (inout) :: r(:)

6 real (kind=DP), intent (in) :: a(:)

7 end subroutine fn

8 end interface

where r(:) has to be understood as the result of the function.

x/x(:): Type real (kind=DP) (input-output). The result of the error propagation.

a(:): Type real (kind=DP) (input). The input variables.

fn: The routine where errors need to be propagated.

4.3.6 aderr grad(grad, f, x)

Determines the gradient of the function f at the point x. The routine comes in two flavors:
single variable or multiple variables. In the single variable version grad(:) is a double
precision vector and f is a function with the following interface

1 interface

2 function f(x)

3 type (uwreal), intent (in) :: x(:)

4 type (uwreal) :: f

5 end function f

6 end interface
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while in the multiple variable version grad(:,:) is a douple precision two dimensional
array and f has the interface

1 interface

2 subroutine f(r, x)

3 type (uwreal), intent (in) :: x(:)

4 type (uwreal), intent (inout) :: r(:)

5 end subroutine f

6 end interface

grad(:)/grad(:,:): Type real (kind=DP) (input-output). The gradient of the func-
tion. In the single variable version the notation is obvious

grad(j) =
∂f

∂xj
, (9)

while in the multiple variable version we have

grad(i, j) =
∂fi
∂xj

. (10)

f: The routine whose gradient we want to compute.

x(:): Type uwreal (input). The point at which the derivative has to be computed.

4.3.7 aderr hess(hess, f, x)

Determines the Hessian of the function f at the point x. The routine comes in two flavors:
single variable or multiple variables. In the single variable version hess(:,:) is a double
precision matrix and f is a function with the following interface

1 interface

2 function f(x)

3 type (uwreal), intent (in) :: x(:)

4 type (uwreal) :: f

5 end function f

6 end interface

while in the multiple variable version hess(:,:,:) is a douple precision three dimensional
array and f has the interface

1 interface

2 subroutine f(r, x)

3 type (uwreal), intent (in) :: x(:)

4 type (uwreal), intent (inout) :: r(:)

5 end subroutine f

6 end interface

hess(:,:)/hess(:,:,:): Type real (kind=DP) (input-output). The hessian of the
function. In the single variable version we have

hess(i, j) =
∂f

∂xi∂xj
. (11)
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while in the multiple variable version this has to be understood as in

hess(k, i, j) =
∂fk

∂xi∂xj
. (12)

f: The routine whose gradient we want to compute.

x(:): Type uwreal (input). The point at which the derivative has to be computed.

4.3.8 aderr cov(mat,p)

Determines the convariance matrix among the observables p(:). The general expression
for the covariance matrix is

mat(:,:): Type real (kind=DP) (input-output). After calling the routine, the covari-
ance ammong the observables p(:).

p(:): Type uwreal (input). A vector of observables whose covariance is to be determined.

5 Additional modules

In the distribution (src/misc) there are a few additional modules for managing the pre-
cision of real and complex data types, the definition of common mathematical constants,
time and date manipulation, manipulation of Fourier series and FFT (thanks to the FFT
package [2]), non-numerical routines (manipulation of command-line arguments and data
checksum), and BDIO i/o [4].

These modules are not needed for error analysis and are only needed internally. They
are provided without documentation.

5.1 module numtypes

Includes the definition of simple precision (SP), and double precision (DP).

5.2 module constants

Includes the definition of the simple and double precision mathematical constants of ta-
ble 1.

5.3 module time

Date and time manipulation.

5.4 module fourier

Manipulation of Fourier series and FFT (thanks to the FFT package [2]).

5.5 module nonnumeric

This module includes command line argument manipulation, data checksum and sort-
ing/searching routines.

5.6 module BDIO

This module provides a fortran library for BDIO i/o [4].
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SP Name DP Name Value

PI SP PI DP π
TWOPI SP TWOPI DP 2π
HALFPI SP HALFPI DP π/2
UNITIMAG SPC UNITIMAG DPC ı
PI IMAG SPC PI IMAG DPC πı
TWOPI IMAG SPC TWOPI IMAG DPC 2πı
HALFPI IMAG SPC HALFPI IMAG SDC ı π/2

SR2 SP SR2 DP
√

2

SR3 SP SR3 DP
√

3
SRe SP SRe DP

√
e

SRpi SP SRpi DP
√
π

LG102 SP LG102 DP log10 2
LG103 SP LG103 DP log10 3
LG10e SP LG10e DP log10 e
LG10pi SP LG10pi DP log10 π
LGe2 SP LGe2 DP loge 2
LGe3 SP LGe3 DP loge 3
LGe10 SP LGe10 DP loge 10
GEULER SP GEULER DP γ(= 0.5772 . . . )

Table 1: Mathematical constants defined in the module constants.

6 FAQ

6.1 Why fortran?

The main reason is portability. I am not sure how many cores, what OS or architecture
we will use in 20 years, but I am sure that this code will work.

6.2 Why automatic differentiation?

The most subtle issue in the practical implementation of the theory of linear error propa-
gation is the computation of derivatives. Numerical diferentiation is an ill defined problem.

Automatic differentiation is exact up to machine precision, and way easier to implement
(and faster) than symbolic differentiation. In the opinion of the author is the solution
to the problem.

6.3 Is there any serious limitation of the code?

The only serious limitation that I can imagine is to handle gaps in MC histories (i.e.
different observables of the same MC chain determined with different statistics).

Of course this is not a limitation in principle, and can be solved with a limited effort.
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