
Introduction to julia

G. Jay Kerns

March 2, 2013

Contents

1 What you need to get started 2

2 Getting started with julia 2
2.1 Communicating with julia . 2
2.2 julia is one fancy calculator 3
2.3 Getting Help . 8

3 Other tips 9
3.1 Other resources . 9

4 Plotting with Winston 9

5 Fitting (generalized) linear models 9

This document is a brief introduction to julia. It is a reworked Brief
Introduction to R (which is an abbreviated Chapter 2 of IPSUR) which I
usually distribute to students using R for the first time. One of the reasons
for this document is that I wanted to get better acquainted with julia and
thought it might make it easier for others to get better acquainted with it,
too. In what follows, we assume you have at least a passing familiarity with
Org-mode and Emacs keybindings.

Please bear in mind that the discussion below is written as if a person
has launched julia with M-x julia and is sitting in front of an ESS julia
interactive session right now. But that isn’t required. In fact, one of the
best things about Org-mode is that such a thing in fact is not required,
and a person can happily breeze through an org file tapping C-c C-c as
(s)he goes. For the purpose of this introductory document it doesn’t matter
which approach you use; be warned, however, that some of the lower code

1

http:ipsur.org

blocks depend on values from the upper code blocks and if you try to execute
them out of order then you will get an error.

1 What you need to get started

You will need to install julia, a recent version of ESS, and an updated
version of Org-mode. Instructions for how to accomplish all three tasks
are detailed in Org-mode and julia: an introduction. Please read that
document first to get up to speed before continuing.

Note: several code blocks below have the header argument :eval
no-export which means that the code block can be evaluated interactively
in this session by C-c C-c with point in the code block but will not be eval-
uated during export. The reason is that those blocks have settings which
conflict with my current setup yet are meant to be useful for others people.

2 Getting started with julia

2.1 Communicating with julia

There are three basic methods (provided by ESS) for communicating with
julia.

• An Interactive session (julia>). This is the most basic way to
complete simple, one-line commands. Do M-x julia RET during an
Emacs session and the Emacs/ESS julia mode will open in a buffer.
Type whatever command you like; julia will evaluate what is typed
there and output the results in the buffer. This method is akin to
launching julia in a terminal.

• Source files. For longer programs (called scripts) there is too much
code to write all at once in an interactive session. Further, sometimes
we only wish to modify a small piece of the script and before running
it again in julia.

The way to do this is to open a dedicated julia script buffer with the
sequence C-x C-f whatever.jl, where whatever.jl is a julia script
which you’ve named whatever. Write the code in the buffer, then when
satisfied the user evaluates lines or regions according to the following
table. Then julia will evaluate the respective code and give output
in the interactive buffer.

2

http://julialang.org
http://ess.r-project.org
http://orgmode.org
file://ob-julia-doc.org

C-RET Send region or current line and step to next line of code.
M-C-x Send region or function or paragraph.
C-c C-c Send region or function or paragraph and step to next line.

• Script mode. It is also possible to write a julia script (say,
myscript.jl and evaluate the script from a terminal like this:

~$ julia myscript.jl

Depending on what’s in the script, julia can be instructed to do all
sorts of things. See julia --help for additional options. (Note: you
will need to add julia to your PATH or otherwise execute julia from
its location before proceeding with this method.)

2.2 julia is one fancy calculator

julia can do any arithmetic you can imagine. For example, in an interactive
session type 2 + 3 and observe

2 + 3

5

The julia> means that julia is waiting on your next command. Entry
numbers will be generated for each row, such as

[3:50]

48-element Int32 Array:
3
4
5
6
7
8
9

10
11
12

3

...
41
42
43
44
45
46
47
48
49
50

Notice that julia doesn’t show the whole list of numbers, it elides them

with vertical ellipses
.... Note also the [3:50] notation, which generates all

integers in sequence from 3 to 50. One can also do things like

2 * 3 * 4 * 5 # multiply
sqrt(10) # square root
pi # pi
sqrt(-2)

120
3.1622776601683795
3.141592653589793
ERROR: DomainError()
in sqrt at math.jl:111

Notice that a DomainError() was produced; we are not allowed to take
square roots of negative numbers. Also notice the number sign #, which is
used for comments. Everything typed on the same line after the # will be
ignored by julia. There is no julia continuation prompt. If you press RET
before a statement is complete then empty lines keep piling up until you
finish the command.

Some other fuctions that will be of use are abs() for absolute value,
log() for the natural logarithm, exp() for the exponential function, and
factorial() for. . . uh. . . factorials.

Assignment is useful for storing values to be used later. Notice the semi-
colon at the end of the first statement. Without the semicolon, julia would
print the result of the assigment (namely, 5).

4

y = 5; # stores the value 5 in y
3 + y

8

There aren’t other assignment operators (like <- in R). For variable
names you can use letters (perhaps followed by) numbers, and/or under-
score "_" characters. You cannot use mathematical operators, you cannot
use dots, and numbers can’t go in front of numbers (those are interpreted
by julia as coefficients). Here are some valid variable names: x, x1, y32,
z_var.

If you would like to enter the data 74,31,95,61,76,34,23,54,96 into julia,
you may create a data array with double brackets (the analogue of the c()
function in R).

fred = [74, 31, 95, 61, 76, 34, 23, 54, 96]

9-element Int32 Array:
74
31
95
61
76
34
23
54
96

The array fred has 9 entries. We can access individual components with
bracket [] notation:

fred[3]
fred[2:4]
fred[[1, 3, 5, 8]]

95
3-element Int32 Array:
31
95
61

5

4-element Int32 Array:
74
95
76
54

Notice we needed double brackets for the third example. If you would
like to empty the array fred, you can do it by typing fred = [].

Data arrays in julia have type. There are all sorts of integer types
(Int8, uInt8, Int32, . . .), strings (ASCIIString), logical (Bool), unicode
characters (Char), then there are floating-point types (Float16, Float32),
even complex numbers like 1 + 2im and even rational numbers like 3//4,
not to mention Inf, -Inf, and NaN (which stands for not a number). If you
ever want to know what it is you’re dealing with you can find out with the
typeof function.

simpsons = ["Homer", "Marge", "Bart", "Lisa", "Maggie"];
typeof(simpsons)

Array{ASCIIString,1}

Here is an example of a logical vector:

x = 5;
x >= 6

false

Notice the >= symbol which stands for "greater than or equal to". Many
functions in julia are vectorized. Once we have stored a data vector then
we can evaluate functions on it.

sum(fred)
length(fred)
sum(fred)/length(fred)
mean(fred) # sample mean, should be same answer

544
9
60.44444444444444
60.44444444444444

6

Other popular functions for vectors are min(), max(), sort(), and
cumsum().

Arithmetic in julia is usually done element-wise, and the operands (usu-
ally) must be of conformable dimensions.

mary = [4, 5, 3, 6, 4, 6, 7, 3, 1];
fred + mary
fred - mean(mary)

9-element Int32 Array:
78
36
98
67
80
40
30
57
97

9-element Float64 Array:
69.6667
26.6667
90.6667
56.6667
71.6667
29.6667
18.6667
49.6667
91.6667

The operations + and - are performed element-wise. Notice in the last
vector that mean(fred) was subtracted from each entry in turn. This is also
known as data recycling. Other popular vectorizing functions are sin(),
cos(), exp(), log(), and sqrt().

An operation which is not performed elementwise is array multiplication,
*. If were were to try fred*mary then we would get an error:

ERROR: no method *(Array{Int32,1},Array{Int32,1})

The reason for the error is that julia is trying to do matrix multiplication
on two 9x1 arrays which, we know from Linear Algebra, is not allowed.
Instead, we can accomplish element-wise multiplication with the following:

7

fred.*mary

9-element Int32 Array:
296
155
285
366
304
204
161
162
96

Notice the dot before the multiplication. A similar trick works for ele-
mentwise division. By the way, with two 9x1 arrays it is legal to compute
the dot product like this:

fred’*mary

1-element Int32 Array:
2029

where notice we have transposed fred and done ordinary matrix multi-
plication with fred’*mary.

2.3 Getting Help

When you get in the thick of julia you will soon find yourself looking for
help. The help resources for julia are not (yet) as extensive as those for
some other languages that have been around for a while (such as R). julia
is new and many of the help topics haven’t been written yet. Nevertheless,
sometimes a person is lucky and you can get help on a function when it’s
available with the help() function.

help("factorial")

Base.factorial(n)

Factorial of n

Base.factorial(n, k)

Compute "factorial(n)/factorial(k)"

8

In addition to this, you can type help() which gives an extended list of
help topics. For instance, I find myself doing help("Statistics") a lot.

3 Other tips

It is unnecessary to retype commands repeatedly, since Emacs/ESS remem-
bers what you have entered at the julia> prompt. To navigate through
previous commands put point at the lowest command line and do either M-p
or M-n.

3.1 Other resources

• Check out the official julia manual here.

• The Standard Library (a different type of manual) is here.

• There is a vibrant and growing julia community whose gateway is
here.

• There is a large and growing list of contributed packages here.

4 Plotting with Winston

There’s a pretty well fleshed out plotting example in the Graphics section of
Org-mode and julia: an introduction. Check it out.

5 Fitting (generalized) linear models

Douglas Bates (of Mixed Effects Models in S and S-PLUS fame) has been
putting together a julia package called GLM which already supports fit-
ting generalized linear models to datasets. This, together with the RDatasets
package means there is already a bunch of stuff to keep a person busy. Be-
low is a modified example from the Multiple Regression chapter of IPSUR,
translated to julia speak.

First, we start using the packages we’ll need.

using RDatasets, DataFrames, Distributions, GLM

Next we load the trees data frame from the RDatasets package (via the
DataFrames package) and fit a linear model to the data.

9

http://docs.julialang.org/en/latest/manual/
http://docs.julialang.org/en/latest/stdlib/
http://julialang.org/community/
http://docs.julialang.org/en/latest/packages/packagelist/
file://ob-julia-doc.org
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-1-4419-0317-4

trees = data("datasets", "trees")
treeslm = lm(:(Girth ~ Height + Volume), trees)

There is a ton of output from both the above commands which we omit
here for the sake of brevity. Most of it, though, is similar to to output we
might see in an R session. We can extract the model coefficients with the
coef function:

coef(treeslm)

3-element Float64 Array:
10.8164
-0.0454835
0.19518

and we can finish by looking at a summary table similar to something
like summary(treeslm) in R.

coeftable(treeslm)

3x4 DataFrame:
Estimate Std.Error t value Pr(>|t|)

[1,] 10.8164 1.9732 5.48165 7.44691e-6
[2,] -0.0454835 0.0282621 -1.60935 0.118759
[3,] 0.19518 0.0109553 17.8161 8.2233e-17

10

	What you need to get started
	Getting started with julia
	Communicating with julia
	julia is one fancy calculator
	Getting Help

	Other tips
	Other resources

	Plotting with Winston
	Fitting (generalized) linear models

