
Org-mode and julia: an introduction

G. Jay Kerns

March 2, 2013

Contents

1 What you need to get started 2
1.1 Julia . 2
1.2 ESS - Emacs Speaks Statistics 2
1.3 Add-on packages . 3
1.4 Org-mode . 3
1.5 ob-julia.el . 4

2 Evaluation inside the Org buffer 4
2.1 :results value . 4
2.2 :results output . 5

3 Graphics 6
3.1 Plotting with Winston . 6

4 Export to other formats 8
4.1 HTML . 8
4.2 LATEX . 9
4.3 Beamer . 9

5 Other things to mention 10

1

This document is an introduction to Org-mode + julia. The only pre-
requisites are a passing familiarity with Org-mode and Emacs keybindings.

1 What you need to get started

Note: several code blocks below have the header argument :eval no-export.
This means that the code block can be evaluated interactively by C-c C-c
with point in the block but will not be evaluated during export. That header
argument is present because those blocks have settings which conflict with
my current setup (or are otherwise redundant) yet are meant to be useful
for other people.

1.1 Julia

You are going to need a working installation of julia. The homepage on
GitHub has the pertinent links collected all in one place:

• Homepage: http://julialang.org

• Binaries: http://code.google.com/p/julialang/downloads/list

• Packages: http://docs.julialang.org/en/latest/packages/packagelist/

• Mailing lists: http://julialang.org/community/

• IRC: http://webchat.freenode.net/?channels=julia

• Source code: https://github.com/JuliaLang/julia

• Git clone URL: git://github.com/JuliaLang/julia.git

• Documentation: http://julialang.org/manual/

Fair warning: the initial install takes a long time, largely because julia
has a lot of dependencies. Never fear, though; subsequent updates are brief.

1.2 ESS - Emacs Speaks Statistics

You are going to need a relavely bleeding-edge version of ESS since it is only
due to recent ESS changes that this document is even possible. The place
to look for the latest version of ESS is here. At some point after installation
you will likely put something like the following in your .emacs:

2

https://github.com/JuliaLang/julia
http://julialang.org
http://code.google.com/p/julialang/downloads/list
http://docs.julialang.org/en/latest/packages/packagelist/
http://julialang.org/community/
http://webchat.freenode.net/?channels=julia
https://github.com/JuliaLang/julia
http://julialang.org/manual/
http://stat.ethz.ch/ESS/index.php?Section=download

(require ’ess-site)

Once ESS is up and running you will need to tell it where the julia
executable is. Edit the following and place it in your .emacs:

(setq inferior-julia-program-name "/path/to/julia-release-basic")

After the above steps are complete then you should be able to start Emacs
and launch an interactive julia session via M-x julia. If you manage to
get that settled then at this point you should be able to do everything in the
Introduction to Julia.

1.3 Add-on packages

There is a growing list of contibuted packages which add to the base func-
tionality of julia. For example, several statistics packages were mentioned
a few moths ago in a blog post by John Myles White entitled The State of
Statistics in Julia. The instructions in the blog post are (already) a bit out-
of-date; the currently recommended way to install the packages is to launch
an interactive julia session and execute the following command:

Pkg.add("DataFrames", "Distributions", "GLM", "MCMC", "Optim",
"NHST", "Clustering")

I recommend you not execute the Pkg.add command here (if you do it in
this buffer then you can’t watch the download and install as it is happening).
As John notes, the RDatasets package takes a lot longer to download than
the others. Perhaps it would be wise to install it separately.

Pkg.add("RDatasets")

You will notice both Pkg.add code blocks have the :eval never header
argument.

1.4 Org-mode

Since you have at least a passing familiarity with org-mode then you probably
already have something like the following in your .emacs:

(require ’org)

Another handy setting to have is

3

file://intro-julia.org
http://docs.julialang.org/en/release-0.1/packages/packagelist/
https://github.com/johnmyleswhite
http://www.johnmyleswhite.com/notebook/2012/12/02/the-state-of-statistics-in-julia/
http://www.johnmyleswhite.com/notebook/2012/12/02/the-state-of-statistics-in-julia/

(setq org-confirm-babel-evaluate nil)

The following lines (either here or in your .emacs) permit inline image
display in the Emacs buffer.

(add-hook ’org-babel-after-execute-hook ’org-display-inline-images)
(add-hook ’org-mode-hook ’org-display-inline-images)

1.5 ob-julia.el

You are going to want a copy of ob-julia.el to fully integrate julia with
Org-mode. You can find it and some other documents to get you started
here. Download ob-julia.el into a convenient place. Edit the code block
below and evaluate it by C-c C-c with point in the code block.

(load "/path/to/ob-julia.el")

An alternative method is to put the following in your .emacs (these
should go below the (require ’org) line):

(add-to-list ’load-path "/path/to/ob-julia.el")
(org-babel-do-load-languages
’org-babel-load-languages
’((emacs-lisp . t) (julia . t)))

You are all set.

2 Evaluation inside the Org buffer

If you’ve gotten this far then everything is installed in the right place and
initialized properly. Now the fun begins.

2.1 :results value

The collection class of the :results header argument supports two mutually
exclusive options: value and output. When :results value is specified,
Org takes the body of the source block, creates a function with that body,
evaluates the function with julia, stores the result in a .csv file, then
converts the .csv file to an emacs-lisp table, and finally inserts the table
in the buffer. Whew! The bottom line? Hit C-c C-c in the following code
block.

4

https://github.com/gjkerns/ob-julia

rand(2,3)

0.5584357754021063 0.9136408669454337 0.506642489779598
0.74985978094506 0.04938552792586104 0.596697983703395

As expected, the output of the command was a 2x3 array and Org in-
serted a table into the buffer. This functionality is relatively powerful with
other languages such as R, for instance, because ob-R.el works with TAB
separated files instead and read.table in R supports reading of much more
varied data types compared to readcsv in julia (at the present time). Nev-
ertheless, the functionality exists in julia and as time passes and julia
adds more options we’ll add more, too.

2.2 :results output

We will get a lot more mileage out of the :results output option. Every
command in the src block body is evaluated by julia in turn and the results
are placed in the buffer to be typeset in a verbatim environment. This option
is similar to typing commands in julia at an interactive session. The analogy
isn’t exact, though, because at an interactive session it is one (1) command
in, one (1) result out. Multiple lines in an org SRC block in contrast have
RESULTS which are lumped together. Like this: (do C-c C-c)

2 + 3
print("hello")
sqrt(5)

5
hello
2.23606797749979

It is sometimes helpful to split up SRC blocks into smaller chunks so
that buildup of RESULTS does not get out of hand. Also, specific to julia
we can sometimes put a semicolon at the end of the command to suppress
output, like this:

2 + 3;
print("hello");
sqrt(5);

hello

Notice the outer two results were suppressed, but not the middle one.

5

3 Graphics

The most stable and fully featured of the julia graphics packages at the
time of this writing appears to be the Winston package, although the Gadfly
package is also available and appears promising. To install the Winston pack-
age execute the following in an interactive session. As above I recommend
you not execute this here (hence the :eval never header argument).

Pkg.add("Winston")

The Winston package has lots of dependencies and many of them must
be built from source (on Ubuntu).

3.1 Plotting with Winston

To get up and running with plots in julia check out the many example
graphs (with code) on the Winston examples page. As far as Org-mode is
concerned, you can do plotting

1. Interactively with a plot window,

2. In-buffer with a png,

3. Via export into LATEX, HTML, Beamer. . .

All three methods require setting up the plot object as a first step, after,
of course, loading the Winston package. Let’s set up a simple plot object
(do C-c C-c with point in the block):

using Winston
x = linspace(0, 3pi, 100)
c = cos(x)
s = sin(x)
p = FramedPlot();
setattr(p, "title", "title!")
setattr(p, "xlabel", L"\Sigma x^2_i")
setattr(p, "ylabel", L"\Theta_i")
add(p, FillBetween(x, c, x, s))
add(p, Curve(x, c, "color", "red"))
add(p, Curve(x, s, "color", "blue"))

6

https://github.com/nolta/Winston.jl
https://github.com/dcjones/Gadfly.jl
https://github.com/dcjones/Gadfly.jl
https://github.com/nolta/Winston.jl/blob/master/doc/examples.md

We did :results silent to omit the lengthy output from being inserted
in the org buffer. So the hard part is finished – we’ve created a plot object
p which is now available to manipulate.

To launch a plot window and look at the graph right now evaluate the
following code block.

Winston.tk(p)

A plot should open in an X11 window with a pretty graph. Suppose
instead we’d like to insert the graph in the org buffer right now. We need
the inline-image display options described in section Org mode. Assuming
you’ve done that, evaluate the following code block.

file(p, "example1.png")

The code block evaluates the command file(p, "example1.png"),
which tells julia to write the graph to a .png file (also available are .pdf,

7

.svg, and .eps, though none of those can be inserted in the org buffer). The
header argument :results graphics tells org-mode that the results are go-
ing to be graphics (as opposed to elisp tables or STDOUT output) and the
header argument :file example1.png tells org to insert an link to the file
example1.png (just created by julia) right after the the code block. This
link is evaluated by org-display-inline-images which results in a .png in
the org buffer.

Notice that we had to specify the file name twice, once inside the code
block and once as a header argument. Some languages (such as R) only
require one specification: the header argument. The reason for this is simple:
ob-R.el includes code which dynamically constructs a graphics device call
behind the scenes, the call depending on the file extension in the :file
header argument. Such a thing is more difficult with julia because different
graphics packages have markedly different device calls (for instance, Gadfly
uses SVG("filename", p)). Maybe someday the calls will stabilize and it
will make sense to write wrapper code to do that automatically. In the
meantime, use whatever package you like and write the filename twice.

We’ll defer the export method discussion to the next section.

4 Export to other formats

Sooner or later you will want to share your work with others, people who
have not (yet) fully come to the realization that Emacs+Org is really quite
better than sliced bread and also is destined to conquer the entire observable
Universe. Perhaps you’d like to make a presentation about how awesome
julia is at a(n) (inter)national conference. Org-mode supports export to
multiple formats. Here we’ll describe a few. There has been work recently
on a brand new exporter which hasn’t yet made it to the official maintenance
branch as of the time of this writing. The following instructions apply to the
new exporter, which is one of the reasons why it was important in the first
section to update your Org-mode.

4.1 HTML

This is the easiest. Insert the following in your .emacs:

(require ’ox-html)

Then open this file and execute C-c C-e to open the export dispatcher.
From there you have three options:

8

1. h H exports as an HTML buffer (can be saved later),

2. h h exports as an HTML file (saved in the working directory),

3. h o exports as an HTML file and opens in a browser.

That’s it. There are a lot of other cool things you can do; see the Org
manual. If you export to HTML then you are going to want your images (if
any) to be .png or .svg files.

4.2 LATEX

This one is just as easy. Insert the following in your .emacs:

(require ’ox-latex)

Then open this file and do

1. C-c C-e l L to export as a LATEX buffer,

2. C-c C-e l l to export as a LATEX file,

3. C-c C-e l p to export as LATEX and generate a PDF,

4. C-c C-e l o to export as LATEX, generate PDF, and open.

There are a ton of other LATEX things to do. See the Org manual. If you
export to PDF then it’s fine to use image formats .png, .eps, or .pdf, but
the .png exports as a blurry raster image - use .pdf instead (or .eps for
external plain LATEX export).

4.3 Beamer

Beamer is a special case unto itself. The short story is that you need the
following in your .emacs:

(require ’ox-beamer)

Then also add an entry for the beamer class in your .emacs. Here is a
boilerplate version which you can customize to taste:

9

(add-to-list ’org-latex-classes
’("beamer"

"\\documentclass[presentation]{beamer}
\[DEFAULT-PACKAGES]
\[PACKAGES]
\[EXTRA]"

("\\section{%s}" . "\\section*{%s}")
("\\subsection{%s}" . "\\subsection*{%s}")
("\\subsubsection{%s}" . "\\subsubsection*{%s}")))

Since beamer is such a special case I have tweaked a minimal julia
beamer presentation in Sample julia Presentation. See there, see the Org
manual, and see Worg too for more information.

5 Other things to mention

• You can extract all of the julia source code (also known as tangling
the Org document) with the keystrokes C-c C-v t. This will generate
a julia script (with extension .jl) in the working directory. Note that
this capability is turned off by default. You can activate it by adding
the header argument :tangle yes to those code blocks you’d like to
tangle or doing a buffer-wide header setting with the line #+PROPERTY:
tangle yes near the top of the org file. See the Org manual for details.

• At the time of this writing ob-julia.el only supports :session eval-
uation and does not support external process evaluation. This means
that every SRC julia block should have a :session SOMETHING header
argument. Alternatively, you can put a buffer-wide header argument
at the top of the org file, something like this:

#+PROPERTY: session *julia*

• You may have noticed that those julia code lines with no output (for
instance, lines with semicolons ; at the end) generate an empty line
in the #+RESULTS below the code block. Consequently, the first time
you evaluate a julia code block without having previously initiated
a julia session with M-x julia the #+RESULTS will have an extra
mystery empty line. It is no mystery. The first statement executed by
ESS when loading julia is an include command. That command has
no output. If that empty line bothers you then execute the code block
again; the mystery empty line will disappear.

10

file://ob-julia-beamer.org

• Be careful when executing code blocks with :results value. Code
block evaluation in that case works by writing the julia commands
to an external file in the /tmp directory, evaluating the commands
with julia, writing the results to a comma-separated (.csv) file, then
reading the .csv file and converting the result to elisp for insertion to
the org buffer. Not all object types are supported by julia for writing
to .csv files, in particular, 1x1matrices and arrays of ASCII characters
are not supported (yet). If you try to evaluate code blocks in those
cases (or any other case where output to .csv is not supported) then
you will get an error.

• After playing around with julia for a while you will notice that instead
of printing long arrays it will elide them with vertical dots in the middle

of the output which look similar to this
... in the buffer. It turns out

that LATEX does not like those three dots because they correspond to
a special character, and the upshot is that your org file will not export
to LATEX successfully. One way around this is to explicitly declare that
special symbol in the LATEX header. That is the reason for the following
line at the top of this org file.

#+LaTeX_HEADER: \DeclareUnicodeCharacter{22EE}{\vdots}

• ob-julia.el does not support rownames and colnames like ob-R.el
does.

11

	What you need to get started
	Julia
	ESS - Emacs Speaks Statistics
	Add-on packages
	Org-mode
	ob-julia.el

	Evaluation inside the Org buffer
	:results value
	:results output

	Graphics
	Plotting with Winston

	Export to other formats
	HTML
	LaTeX
	Beamer

	Other things to mention

