Observables
juobs.meff
— Functionmeff(corr::Vector{uwreal}, plat::Vector{Int64}; pl::Bool=true, data::Bool=false )
meff(corr::Corr, plat::Vector{Int64}; pl::Bool=true, data::Bool=false)
Computes effective mass for a given correlator corr at a given plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
.
The flags pl
and data
allow to show the plots and return data as an extra result.
data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data)
m = meff(corr_pp[1], [50, 60], pl=false)
juobs.dec_const_pcvc
— Functiondec_const_pcvc(corr::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, mu::Vector{Float64}, y0::Int64 ; pl::Bool=true, data::Bool=false)meff(corr::Corr, plat::Vector{Int64}; pl::Bool=true, data::Bool=false)
dec_const_pcvc(corr::Corr, plat::Vector{Int64}, m::uwreal; pl::Bool=true, data::Bool=false)
Computes decay constant using the PCVC relation for twisted mass fermions. The decay constant is computed in the plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
. If it is passed as a uwreal vector, vector of twisted masses mu
and source position y0
must be specified.
The flags pl
and data
allow to show the plots and return data as an extra result.
data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data)
m = meff(corr_pp[1], [50, 60], pl=false)
f = dec_const_pcvc(corr_pp[1], [50, 60], m, pl=false)
juobs.comp_t0
— Functioncomp_t0(Y::YData, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Matrix{Float64}, Nothing}=nothing, npol::Int64=2)
comp_t0(Y::Vector{YData}, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Vector{Matrix{Float64}}, Nothing}=nothing, npol::Int64=2)
Computes t0
using the energy density of the action Ysl
(Yang-Mills action). t0
is computed in the plateau plat
. A polynomial interpolation in t
is performed to find t0
, where npol
is the degree of the polynomial (linear fit by default)
The flag pl
allows to show the plot.
#Single replica
Y = read_ms(path)
rw = read_ms(path_rw)
t0 = comp_t0(Y, [38, 58], L=32)
t0_r = comp_t0(Y, [38, 58], L=32, rw=rw)
#Two replicas
Y1 = read_ms(path1)
Y2 = read_ms(path2)
rw1 = read_ms(path_rw1)
rw2 = read_ms(path_rw2)
t0 = comp_t0([Y1, Y2], [38, 58], L=32, pl=true)
t0_r = comp_t0(Y, [38, 58], L=32, rw=[rw1, rw2], pl=true)