Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
J
juobs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Javier Ugarrio
juobs
Commits
17ce4bb1
Commit
17ce4bb1
authored
Oct 05, 2020
by
Javier
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
uwLinAlg deleted and find_xmin commented
find_xmin to be tested (issues with double exponential fits)
parent
6a9891c7
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
49 additions
and
0 deletions
+49
-0
src/juobs_tools.jl
src/juobs_tools.jl
+49
-0
No files found.
src/juobs_tools.jl
View file @
17ce4bb1
...
...
@@ -141,3 +141,52 @@ Computes the results of a linear interpolation/extrapolation in the y axis
y_lin_fit
(
par
::
Vector
{
uwreal
},
x
::
Union
{
uwreal
,
Float64
})
=
par
[
1
]
+
par
[
2
]
*
x
#TODO: add combined fits
#=
using LsqFit
@doc raw"""
find_xmin(obs::Vector{uwreal}, y0::Int64; pl::Bool=false)
find_xmin(corr::Corr; pl::Bool=false)
Find the platau starting point for a given correlator.
The starting point xmin is determined
|C_2|^2 * exp(-M_2 * (xmin-y0)) / (2 * M_2) < dC(xmin, y0) / 4
where C_2 and M_2 are the matrix element and mass of the first excited state and dC is
the statistical error of the correlator
"""
function find_xmin(obs::Vector{uwreal}, y0::Int64; pl::Bool=false)
p0 = [0.5, 0.5, 1.0, 1.0]
@. model(t, p) = p[1] * exp(-p[2] * (t-y0)) + p[3] * exp(-p[4] * (t-y0))
x = Int64.(0:length(obs)-1)
uwerr.(obs)
y = value.(obs)
dy = err.(obs)
wt = 1 ./ dy.^2
fit = curve_fit(model, Float64.(x[y0+1:end]), y[y0+1:end], p0)
fit = curve_fit(model, Float64.(x[y0+1:end]), y[y0+1:end], wt[y0+1:end], fit.param)
par = fit.param
#println(par)
if par[2] > par[4]
p1 = par[1]
p2 = par[2]
else
p1 = par[3]
p2 = par[4]
end
@. f(t) = p1^2 * exp(-p2 * (t-y0)) / (2 * p2)
xmin = findfirst(t-> f(t) < 0.25*dy[t + 1], x)
if pl
errorbar(x, y, dy, fmt="x")
t = Int64.(y0:length(obs))
plot(t, model(t, par))
display(gcf())
end
return xmin
end
find_xmin(corr::Corr; pl::Bool=false) = find_xmin(corr.obs, corr.y0, pl=pl)
=#
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment