Commit 1f433842 authored by Antonino D'Anna's avatar Antonino D'Anna

pvalue function for uncorrelated data now accept a W vector. default value is...

pvalue function for uncorrelated data now accept a W vector. default value is Vector{Float64}(), and if W is not provided, it is computed as the inverse of the error squared of the data.
parent 23eda071
......@@ -9,4 +9,5 @@ This file should not be merged into master, but only kept as a reference within
- Updated documentation in juobs_tools.jl
- Updated documentation in juobs_type.jl
- Dic 8 2024: added functions plat_av to the existing one. This change should not be code-breaking, since it only add different version of the exising one. Now it is possible to pass a Vector or a Matrix W containing the weight to use in the plateau average. If W is a Matrix, a correlated fit is perform. If W is not given, then the old function is called.
- Dic 10 2024: mpcac function now follow the convention more clearly. documentation updated juobs_tools
\ No newline at end of file
- Dic 10 2024: mpcac function now follow the convention more clearly. documentation updated juobs_tools.
pvalue function for uncorrelated data now accept a W vector. default value is Vector{Float64}(), and if W is not provided, it is computed as the inverse of the error squared of the data.
\ No newline at end of file
......@@ -1838,12 +1838,16 @@ Q = pvalue(chisq, chi2, value.(up), y, wpm; W = 1.0 ./ err.(y) .^ 2, nmc=10000)
function pvalue(chisq::Function,
chi2::Float64,
xp::Vector{Float64},
data::Vector{uwreal};
data::Vector{uwreal},
W::Vector{Float64}=Vector{Float64}();
wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing} = Dict{Int64,Vector{Float64}}(),
nmc::Int64 = 5000)
n = length(xp) # Number of fit parameters
m = length(data) # Number of data
if (m-n<0)
error("more parameters than data")
end
xav = zeros(Float64, n+m)
for i in 1:n
......@@ -1862,22 +1866,20 @@ function pvalue(chisq::Function,
hess = Array{Float64}(undef, n+m, n+m)
ForwardDiff.hessian!(hess, ccsq, xav, cfg)
if (m-n > 0)
if length(W) ==0
W = zeros(Float64, m)
for i in 1:m
if (data[i].err == 0.0)
#isnothing(wpm) ? wuerr(data[i]) : uwerr(data[i], wpm)
uwerr(data[i], wpm)
if (data[i].err == 0.0)
error("Zero error in fit data")
end
end
global W[i] = 1.0 / data[i].err^2
W[i] = 1.0 / data[i].err^2
end
end
m = length(data)
n = size(hess, 1) - m
hm = view(hess, 1:n, n+1:n+m)
sm = Array{Float64, 2}(undef, n, m)
for i in 1:n, j in 1:m
......@@ -1909,7 +1911,6 @@ function pvalue(chisq::Function,
x = x / eig[1]
#dQ = juobs.mean((x .> 0) .* exp.(-x * 0.5) * 0.5 ./ sqrt.(abs.(x)))
#dQ = err(cse)/value(cse) * dQ
end
return Q
end
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment