Observables
juobs.meff
— Functionmeff(corr::Vector{uwreal}, plat::Vector{Int64}; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
meff(corr::Corr, plat::Vector{Int64}; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
Computes effective mass for a given correlator corr at a given plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
.
The flags pl
and data
allow to show the plots and return data as an extra result.
data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data)
m = meff(corr_pp[1], [50, 60], pl=false)
juobs.mpcac
— Functionmpcac(a0p::Vector{uwreal}, pp::Vector{uwreal}, plat::Vector{Int64}; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
mpcac(a0p::Corr, pp::Corr, plat::Vector{Int64}; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
Computes the bare PCAC mass for a given correlator a0p
and pp
at a given plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
.
The flags pl
and data
allow to show the plots and return data as an extra result. The ca
variable allows to compute mpcac
using the improved axial current.
data_pp = read_mesons(path, "G5", "G5")
data_a0p = read_mesons(path, "G5", "G0G5")
corr_pp = corr_obs.(data_pp)
corr_a0p = corr_obs.(data_a0p)
m12 = mpcac(corr_a0p, corr_pp, [50, 60], pl=false)
p0 = 9.2056
p1 = -13.9847
g2 = 1.73410
ca = -0.006033 * g2 *( 1 + exp(p0 + p1/g2))
m12 = mpcac(corr_a0p, corr_pp, [50, 60], pl=false, ca=ca)
juobs.dec_const
— Functiondec_const(a0p::Vector{uwreal}, pp::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, y0::Int64; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const(a0p::Corr, pp::Corr, plat::Vector{Int64}, m::uwreal; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const(a0pL::Vector{uwreal}, a0pR::Vector{uwreal}, ppL::Vector{uwreal}, ppR::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, y0::Int64; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const(a0pL::Corr, a0pR::Corr, ppL::Corr, ppR::Corr, plat::Vector{Int64}, m::uwreal; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
Computes the bare decay constant using $A_0P$ and $PP$ correlators . The decay constant is computed in the plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
. If it is passed as a uwreal vector, effective mass m
and source position y0
must be specified.
The flags pl
and data
allow to show the plots and return data as an extra result. The ca
variable allows to compute dec_const
using the improved axial current.
The method assumes that the source is close to the boundary. It takes the following ratio to cancel boundary effects. $R = \frac{f_A(x_0, y_0)}{\sqrt{f_P(T-y_0, y_0)}} * e^{m (x_0 - T/2)}$
If left and right correlators are included in the input. The result is computed with the following ratio $R = \sqrt{f_A(x_0, y_0) * f_A(x_0, T - 1 - y_0) / f_P(T - 1 - y_0, y_0)}$
data_pp = read_mesons(path, "G5", "G5", legacy=true)
data_a0p = read_mesons(path, "G5", "G0G5", legacy=true)
corr_pp = corr_obs.(data_pp, L=32)
corr_a0p = corr_obs.(data_a0p, L=32)
corr_a0pL, corr_a0pR = [corr_a0p[1], corr_a0p[2]]
corr_ppL, corr_ppR = [corr_pp[1], corr_pp[2]]
m = meff(corr_pp[1], [50, 60], pl=false)
beta = 3.46
p0 = 9.2056
p1 = -13.9847
g2 = 6 / beta
ca = -0.006033 * g2 *( 1 + exp(p0 + p1/g2))
f = dec_const(corr_a0p[1], corr_pp[1], [50, 60], m, pl=true, ca=ca)
f_ratio = dec_const(corr_a0pL, corr_a0pR, corr_ppL, corr_ppR, [50, 60], m, pl=true, ca=ca)
juobs.dec_const_pcvc
— Functiondec_const_pcvc(corr::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, mu::Vector{Float64}, y0::Int64 ; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const_pcvc(corr::Corr, plat::Vector{Int64}, m::uwreal; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const_pcvc(ppL::Vector{uwreal}, ppR::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, mu::Vector{Float64}, y0::Int64 ; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
dec_const_pcvc(corrL::Corr, corrR::Corr, plat::Vector{Int64}, m::uwreal; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
Computes decay constant using the PCVC relation for twisted mass fermions. The decay constant is computed in the plateau plat
. Correlator can be passed as an Corr
struct or Vector{uwreal}
. If it is passed as a uwreal vector, vector of twisted masses mu
and source position y0
must be specified.
The flags pl
and data
allow to show the plots and return data as an extra result.
The method extract the matrix element assuming that the source is in the bulk. ** **If left and right correlators are included in the input. The result is computed with a ratio that cancels boundary effects: $R = \sqrt{f_P(x_0, y_0) * f_P(x_0, T - 1 - y_0) / f_P(T - 1 - y_0, y_0)}$
data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data, L=32)
m = meff(corr_pp[1], [50, 60], pl=false)
f = dec_const_pcvc(corr_pp[1], [50, 60], m, pl=false)
#left and right correlators
f_ratio = dec_const_pcvc(ppL, ppR, [50, 60], m)
juobs.comp_t0
— Functioncomp_t0(Y::YData, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Matrix{Float64}, Nothing}=nothing, npol::Int64=2, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
comp_t0(Y::Vector{YData}, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Vector{Matrix{Float64}}, Nothing}=nothing, npol::Int64=2, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)
Computes t0
using the energy density of the action Ysl
(Yang-Mills action). t0
is computed in the plateau plat
. A polynomial interpolation in t
is performed to find t0
, where npol
is the degree of the polynomial (linear fit by default)
The flag pl
allows to show the plot.
#Single replica
Y = read_ms(path)
rw = read_ms(path_rw)
t0 = comp_t0(Y, [38, 58], L=32)
t0_r = comp_t0(Y, [38, 58], L=32, rw=rw)
#Two replicas
Y1 = read_ms(path1)
Y2 = read_ms(path2)
rw1 = read_ms(path_rw1)
rw2 = read_ms(path_rw2)
t0 = comp_t0([Y1, Y2], [38, 58], L=32, pl=true)
t0_r = comp_t0(Y, [38, 58], L=32, rw=[rw1, rw2], pl=true)