Observables

juobs.meffFunction
meff(corr::Vector{uwreal}, plat::Vector{Int64}; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)     

meff(corr::Corr, plat::Vector{Int64}; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

Computes effective mass for a given correlator corr at a given plateau plat. Correlator can be passed as an Corr struct or Vector{uwreal}.

The flags pl and data allow to show the plots and return data as an extra result.

data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data)
m = meff(corr_pp[1], [50, 60], pl=false)
source
juobs.mpcacFunction
mpcac(a0p::Vector{uwreal}, pp::Vector{uwreal}, plat::Vector{Int64}; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

mpcac(a0p::Corr, pp::Corr, plat::Vector{Int64}; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

Computes the bare PCAC mass for a given correlator a0p and pp at a given plateau plat. Correlator can be passed as an Corr struct or Vector{uwreal}.

The flags pl and data allow to show the plots and return data as an extra result. The ca variable allows to compute mpcac using the improved axial current.

data_pp = read_mesons(path, "G5", "G5")
data_a0p = read_mesons(path, "G5", "G0G5")
corr_pp = corr_obs.(data_pp)
corr_a0p = corr_obs.(data_a0p)
m12 = mpcac(corr_a0p, corr_pp, [50, 60], pl=false)

p0 = 9.2056
p1 = -13.9847
g2 = 1.73410
ca = -0.006033 * g2 *( 1 + exp(p0 + p1/g2))

m12 = mpcac(corr_a0p, corr_pp, [50, 60], pl=false, ca=ca)
source
juobs.dec_constFunction
dec_const(a0p::Vector{uwreal}, pp::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, y0::Int64; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const(a0p::Corr, pp::Corr, plat::Vector{Int64}, m::uwreal; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const(a0pL::Vector{uwreal}, a0pR::Vector{uwreal}, ppL::Vector{uwreal}, ppR::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, y0::Int64; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const(a0pL::Corr, a0pR::Corr, ppL::Corr, ppR::Corr, plat::Vector{Int64}, m::uwreal; ca::Float64=0.0, pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

Computes the bare decay constant using $A_0P$ and $PP$ correlators . The decay constant is computed in the plateau plat. Correlator can be passed as an Corr struct or Vector{uwreal}. If it is passed as a uwreal vector, effective mass m and source position y0 must be specified.

The flags pl and data allow to show the plots and return data as an extra result. The ca variable allows to compute dec_const using the improved axial current.

The method assumes that the source is close to the boundary. It takes the following ratio to cancel boundary effects. $R = \frac{f_A(x_0, y_0)}{\sqrt{f_P(T-y_0, y_0)}} * e^{m (x_0 - T/2)}$

If left and right correlators are included in the input. The result is computed with the following ratio $R = \sqrt{f_A(x_0, y_0) * f_A(x_0, T - 1 - y_0) / f_P(T - 1 - y_0, y_0)}$

data_pp = read_mesons(path, "G5", "G5", legacy=true)
data_a0p = read_mesons(path, "G5", "G0G5", legacy=true)

corr_pp = corr_obs.(data_pp, L=32)
corr_a0p = corr_obs.(data_a0p, L=32)

corr_a0pL, corr_a0pR = [corr_a0p[1], corr_a0p[2]]
corr_ppL, corr_ppR = [corr_pp[1], corr_pp[2]]

m = meff(corr_pp[1], [50, 60], pl=false)

beta = 3.46
p0 = 9.2056
p1 = -13.9847
g2 = 6 / beta
ca = -0.006033 * g2 *( 1 + exp(p0 + p1/g2))

f = dec_const(corr_a0p[1], corr_pp[1], [50, 60], m, pl=true, ca=ca)

f_ratio = dec_const(corr_a0pL, corr_a0pR, corr_ppL, corr_ppR, [50, 60], m, pl=true, ca=ca)
source
juobs.dec_const_pcvcFunction
dec_const_pcvc(corr::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, mu::Vector{Float64}, y0::Int64 ; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const_pcvc(corr::Corr, plat::Vector{Int64}, m::uwreal; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const_pcvc(ppL::Vector{uwreal}, ppR::Vector{uwreal}, plat::Vector{Int64}, m::uwreal, mu::Vector{Float64}, y0::Int64 ; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

dec_const_pcvc(corrL::Corr, corrR::Corr, plat::Vector{Int64}, m::uwreal; pl::Bool=true, data::Bool=false, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

Computes decay constant using the PCVC relation for twisted mass fermions. The decay constant is computed in the plateau plat. Correlator can be passed as an Corr struct or Vector{uwreal}. If it is passed as a uwreal vector, vector of twisted masses mu and source position y0 must be specified.

The flags pl and data allow to show the plots and return data as an extra result.

The method extract the matrix element assuming that the source is in the bulk. ** **If left and right correlators are included in the input. The result is computed with a ratio that cancels boundary effects: $R = \sqrt{f_P(x_0, y_0) * f_P(x_0, T - 1 - y_0) / f_P(T - 1 - y_0, y_0)}$

data = read_mesons(path, "G5", "G5")
corr_pp = corr_obs.(data, L=32)
m = meff(corr_pp[1], [50, 60], pl=false)
f = dec_const_pcvc(corr_pp[1], [50, 60], m, pl=false)

#left and right correlators
f_ratio = dec_const_pcvc(ppL, ppR, [50, 60], m)
source
juobs.comp_t0Function
comp_t0(Y::YData, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Matrix{Float64}, Nothing}=nothing, npol::Int64=2, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

comp_t0(Y::Vector{YData}, plat::Vector{Int64}; L::Int64, pl::Bool=false, rw::Union{Vector{Matrix{Float64}}, Nothing}=nothing, npol::Int64=2, wpm::Union{Dict{Int64,Vector{Float64}},Dict{String,Vector{Float64}}, Nothing}=nothing)

Computes t0 using the energy density of the action Ysl(Yang-Mills action). t0 is computed in the plateau plat. A polynomial interpolation in t is performed to find t0, where npol is the degree of the polynomial (linear fit by default)

The flag pl allows to show the plot.

#Single replica
Y = read_ms(path)
rw = read_ms(path_rw)

t0 = comp_t0(Y, [38, 58], L=32)
t0_r = comp_t0(Y, [38, 58], L=32, rw=rw)

#Two replicas
Y1 = read_ms(path1)
Y2 = read_ms(path2)
rw1 = read_ms(path_rw1)
rw2 = read_ms(path_rw2)

t0 = comp_t0([Y1, Y2], [38, 58], L=32, pl=true)
t0_r = comp_t0(Y, [38, 58], L=32, rw=[rw1, rw2], pl=true)
source