Commit a9648fc8 authored by Inigo Aldazabal's avatar Inigo Aldazabal

refreshed notebook

parent 52328bd7
......@@ -79,7 +79,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
......@@ -120,7 +122,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"L = range(1000)"
......@@ -129,7 +133,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%timeit [ i**2 for i in L ]"
......@@ -138,7 +144,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(1000)"
......@@ -147,7 +155,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%timeit a**2"
......@@ -172,7 +182,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"np.array # SHIFT+TAB"
......@@ -189,6 +201,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
......@@ -199,7 +212,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"np.con # TAB completion"
......@@ -222,7 +237,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np"
......@@ -252,7 +269,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.array([0, 1, 2, 3])\n",
......@@ -262,7 +281,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a.ndim"
......@@ -271,7 +292,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a.shape"
......@@ -280,7 +303,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"len(a)"
......@@ -296,7 +321,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.array([[0, 1, 2], [3, 4, 5]]) # 2 x 3 array\n",
......@@ -306,7 +333,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b.ndim"
......@@ -315,7 +344,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b.shape # notice row-column order"
......@@ -324,7 +355,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"len(b) # returns the size of the first dimension"
......@@ -372,7 +405,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(10) # 0 .. n-1\n",
......@@ -382,7 +417,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.arange(1, 9, 2) # start, end (exclusive), step\n",
......@@ -399,7 +436,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"c = np.linspace(0, 1, 6) # start, end, num-points\n",
......@@ -409,7 +448,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"d = np.linspace(0, 1, 5, endpoint=False)\n",
......@@ -426,7 +467,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.ones((3, 3))\n",
......@@ -436,7 +479,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.zeros((2, 2))\n",
......@@ -446,7 +491,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"c = np.eye(3)\n",
......@@ -456,7 +503,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"np.diag([1, 2, 3, 4])"
......@@ -472,7 +521,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.random.rand(4) # uniform in [0, 1] \n",
......@@ -482,7 +533,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.random.randn(4) # Gaussian\n",
......@@ -534,7 +587,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
......@@ -545,7 +600,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"2**a"
......@@ -561,7 +618,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.ones(4) + 1\n",
......@@ -571,7 +630,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a * b"
......@@ -594,7 +655,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"c = np.ones((3, 3))\n",
......@@ -618,7 +681,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# python 2 and 3\n",
......@@ -628,7 +693,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"c @ c"
......@@ -659,7 +726,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.ones(4)*2\n",
......@@ -670,7 +739,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a_j = a**(3.*b) - b\n",
......@@ -694,7 +765,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.array([1, 2, 3, 4])\n",
......@@ -706,7 +779,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a > b"
......@@ -723,6 +798,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"scrolled": true
},
"outputs": [],
......@@ -734,7 +810,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"np.log(a)"
......@@ -743,7 +821,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"np.exp(a)"
......@@ -759,7 +839,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(4)\n",
......@@ -776,7 +858,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"A = np.random.rand(3, 3)\n",
......@@ -786,7 +870,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"A.T"
......@@ -851,7 +937,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(10)\n",
......@@ -861,7 +949,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[0], a[2], a[-1]"
......@@ -892,7 +982,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[::-1] # start:end:step"
......@@ -908,7 +1000,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.diag(np.arange(3))\n",
......@@ -918,7 +1012,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[1, 1]"
......@@ -927,7 +1023,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[2, 1] = 10 # third line, second column\n",
......@@ -937,7 +1035,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[1] # row wise"
......@@ -975,7 +1075,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(10)\n",
......@@ -985,7 +1087,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[2:9:3] # start:end:step"
......@@ -1001,7 +1105,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[:4]"
......@@ -1018,7 +1124,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[1:3]"
......@@ -1027,7 +1135,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[::2]"
......@@ -1036,7 +1146,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a[3:]"
......@@ -1052,7 +1164,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from IPython.display import Image\n",
......@@ -1069,7 +1183,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.arange(10)\n",
......@@ -1080,7 +1196,9 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"b = np.arange(5)\n",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment