Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
A
ADerrors.jl
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Fabian Joswig
ADerrors.jl
Commits
37235722
Commit
37235722
authored
Jul 16, 2020
by
Alberto Ramos
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added information on the use of PackageCompiler
parent
e9df23a0
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
98 additions
and
0 deletions
+98
-0
README.md
README.md
+32
-0
extra/typical.jl
extra/typical.jl
+66
-0
No files found.
README.md
View file @
37235722
...
...
@@ -37,5 +37,37 @@ julia> import Pkg
It is better to start with the
[
Getting started
](
https://ific.uv.es/~alramos/docs/ADerrors/tutorial/
)
guide.
# Alleviating time to first run
`Julia`
is well known for being slow the first time that you run some
routines. On the first call to a function Julia not only runs the
code, but also compiles it, making the first call slow.
This problem can be alleviated in general with
[
PackageCompiler.jl
](
https://github.com/JuliaLang/PackageCompiler.jl
)
. This
is specially true for the case of
`ADerrors`
since most functions are
type static.
As example, the file
`extra/typical.jl`
contains the most typical
calls to
`ADerrors`
. One can execute this file telling julia to
annotate the functions that are compiled
```
julia
julia
--
trace
-
compile
=
precompile_aderrors
.
jl
typical
.
jl
```
Now the functions annotated in
`precompile_aderrors.jl`
can be
compiled and included in a
`sysimage`
that is autmatically loaded
whenever you start Julia
```
julia
julia
>
using
PackageCompiler
julia
>
PackageCompiler
.
create_sysimage
(
:
ADerrors
;
precompile_statements_file
=
"precompile_aderrors.jl"
,
replace_default
=
true
)
```
This will make
`ADerrors`
from the first call. Obviously you can tune
the file
`typical.jl`
to your usage, or add other packages. Please
note that packages included in the sysimage are locked to the versions
of the sysimage. If you update
`ADerrors`
make sure to re-generate the
sysimage. Probably is better to read [the documentation of
PackageCompiler](https://julialang.github.io/PackageCompiler.jl/dev/sysimages/)
in order to fully understand the drawbacks.
extra/typical.jl
0 → 100644
View file @
37235722
using
ADerrors
# Input of uwreal's
a
=
uwreal
(
rand
(
1000
),
1
)
b
=
uwreal
([
1.0
,
0.1
],
2
)
p
=
cobs
([
1.0
,
2.0
],
[
1.0
0.1
;
0.1
2.0
],
[
3
,
4
])
# Most common operations.
# You might add something else if
# you use it frequently
for
op
in
(
:-
,
:
sin
,
:
cos
,
:
log
,
:
log10
,
:
log2
,
:
sqrt
,
:
exp
,
:
exp2
,
:
exp10
,
:
sinh
,
:
cosh
,
:
tanh
)
@eval
c
=
$
op
(
a
)
end
c
=
1.0
+
b
c
=
1.0
-
b
c
=
1.0
*
b
c
=
1.0
/
b
c
=
a
+
2.0
c
=
a
-
2.0
c
=
a
*
2.0
c
=
a
/
2.0
c
=
a
^
3
c
=
a
+
b
c
=
a
-
b
c
=
a
*
b
c
=
a
/
b
# Error analysis
uwerr
(
c
)
cov
([
c
,
a
,
b
])
trcov
([
1.0
2.0
3.0
;
2.0
1.0
0.4
;
3.0
0.4
1.0
],
[
c
,
a
,
b
])
details
(
c
)
# Error analysis of fit parameters
npt
=
12
sig
=
zeros
(
npt
,
npt
)
dx
=
zeros
(
npt
)
for
i
in
1
:
npt
dx
[
i
]
=
0.01
*
i
sig
[
i
,
i
]
=
dx
[
i
]
^
2
for
j
in
i
+
1
:
npt
sig
[
i
,
j
]
=
0.0001
-
0.000005
*
abs
(
i
-
j
)
sig
[
j
,
i
]
=
0.0001
-
0.000005
*
abs
(
i
-
j
)
end
end
y
=
[
0.0802273592699947
0.09150837606934502
0.047923648239388834
0.024851583326401416
0.01635482325054799
0.13115281737744588
0.21013177679604178
0.002143355151617357
0.2292183950698425
-
0.05174734852593241
0.1384913891139784
-
0.05211234898997283
]
dt
=
cobs
(
y
,
sig
,
[
100
+
n
for
n
in
1
:
npt
])
chisq
(
p
,
d
)
=
sum
(
(
d
.-
p
[
1
])
.^
2
./
dx
.^
2
)
xp
=
[
sum
(
value
.
(
dt
)
./
dx
)
/
sum
(
1.0
./
dx
)]
(
fitp
,
csqexp
)
=
fit_error
(
chisq
,
xp
,
dt
)
chiexp
(
chisq
,
xp
,
dt
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment