Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
J
juobs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Javier Ugarrio
juobs
Commits
0235bd32
Commit
0235bd32
authored
Oct 21, 2022
by
Alejandro Saez
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
pvalue
parent
0c94c331
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
103 additions
and
1 deletion
+103
-1
src/juobs_tools.jl
src/juobs_tools.jl
+103
-1
No files found.
src/juobs_tools.jl
View file @
0235bd32
...
...
@@ -1180,4 +1180,106 @@ function get_chi2_cov(f::Function, data, C, par, Nalpha) # full + cov
chi2
+=
delta
'
*
Cinv
*
delta
end
return
chi2
end
\ No newline at end of file
end
@doc
raw
"""
pvalue(chisq::Function,
chi2::Float64,
xp::Vector{Float64},
data::Vector{uwreal},
wpm::Dict{Int64,Vector{Float64}} = Dict{Int64,Vector{Float64}}();
W::Union{Vector{Float64},Array{Float64,2}} = Vector{Float64}(),
nmc::Int64 = 5000)
Computes the p-value of a previously done fit, using as input the `\chi^2` observed from the fit, the fit parameters and the fitted data.
The p-value for a given `\chi^2` is the probability of, given the data you have, finding such a `\chi^2` or worse from a fit, and still
have the data well described by the fit function.
Q = pvalue(chisq, chi2, value.(up), y, wpm; W=W, nmc=10000)
"""
function
pvalue
(
chisq
::
Function
,
chi2
::
Float64
,
xp
::
Vector
{
Float64
},
data
::
Vector
{
uwreal
},
wpm
::
Dict
{
Int64
,
Vector
{
Float64
}}
=
Dict
{
Int64
,
Vector
{
Float64
}}();
W
::
Union
{
Vector
{
Float64
},
Array
{
Float64
,
2
}}
=
Vector
{
Float64
}(),
nmc
::
Int64
=
5000
)
n
=
length
(
xp
)
# Number of fit parameters
m
=
length
(
data
)
# Number of data
xav
=
zeros
(
Float64
,
n
+
m
)
for
i
in
1
:
n
xav
[
i
]
=
xp
[
i
]
end
for
i
in
n
+
1
:
n
+
m
xav
[
i
]
=
data
[
i
-
n
]
.
mean
end
ccsq
(
x
::
Vector
)
=
chisq
(
view
(
x
,
1
:
n
),
view
(
x
,
n
+
1
:
n
+
m
))
if
(
n
+
m
<
4
)
cfg
=
ForwardDiff
.
HessianConfig
(
ccsq
,
xav
,
ADerrors
.
Chunk
{
1
}());
else
cfg
=
ForwardDiff
.
HessianConfig
(
ccsq
,
xav
,
ADerrors
.
Chunk
{
4
}());
end
hess
=
Array
{
Float64
}(
undef
,
n
+
m
,
n
+
m
)
ForwardDiff
.
hessian!
(
hess
,
ccsq
,
xav
,
cfg
)
cse
=
0.0
Q
=
dQ
=
0.0
if
(
m
-
n
>
0
)
if
(
length
(
W
)
==
0
)
Ww
=
zeros
(
Float64
,
m
)
for
i
in
1
:
m
if
(
data
[
i
]
.
err
==
0.0
)
uwerr
(
data
[
i
],
wpm
)
if
(
data
[
i
]
.
err
==
0.0
)
error
(
"Zero error in fit data"
)
end
end
Ww
[
i
]
=
1.0
/
data
[
i
]
.
err
^
2
end
else
Ww
=
W
end
#cse = chiexp(hess, data, Ww, wpm)
m
=
length
(
data
)
n
=
size
(
hess
,
1
)
-
m
hm
=
view
(
hess
,
1
:
n
,
n
+
1
:
n
+
m
)
sm
=
Array
{
Float64
,
2
}(
undef
,
n
,
m
)
for
i
in
1
:
n
,
j
in
1
:
m
sm
[
i
,
j
]
=
hm
[
i
,
j
]
/
sqrt
.
(
Ww
[
j
])
end
maux
=
sm
*
sm
'
hi
=
LinearAlgebra
.
pinv
(
maux
)
Px
=
-
hm
'
*
hi
*
hm
for
i
in
1
:
m
Px
[
i
,
i
]
=
Ww
[
i
]
+
Px
[
i
,
i
]
end
C
=
cov
(
data
)
nu
=
sqrt
(
C
)
*
Px
*
sqrt
(
C
)
N
=
length
(
nu
[
1
,
:
])
z
=
randn
(
N
,
nmc
)
eig
=
abs
.
(
eigvals
(
nu
))
eps
=
1e-14
*
maximum
(
eig
)
eig
=
eig
.*
(
eig
.>
eps
)
aux
=
eig
'
*
(
z
.^
2
)
Q
=
1.0
-
juobs
.
mean
(
aux
.<
chi2
)
x
=
chi2
.-
eig
[
2
:
end
]
'
*
(
z
[
2
:
end
,
:
]
.^
2
)
x
=
x
/
eig
[
1
]
#dQ = juobs.mean((x .> 0) .* exp.(-x * 0.5) * 0.5 ./ sqrt.(abs.(x)))
#dQ = err(cse)/value(cse) * dQ
end
return
Q
#uwreal([Q,dQ],"")
end
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment