Commit 1d04b206 authored by Alessandro 's avatar Alessandro

fit_routine added (juobs_tool) and small modification in juobs_linalg

parent 6a9891c7
......@@ -88,13 +88,13 @@ It returns a vector array eff_en where each entry eff_en[t] contains the first
function energies(evals::Vector{Vector{uwreal}})
time = length(evals)
n = length(evals[1])
eff_en = Vector{Vector}(undef, n)
eff_en = Array{Array{uwreal}}(undef, n)
aux_en = Vector{uwreal}(undef, time-1)
for i in 1:n
#aux_en = Vector{uwreal}(undef, time-1)
for t in 1:time-1
ratio = evals[t][i] / evals[t+1][i]
aux_en[t] = log(sqrt(ratio * ratio))
aux_en[t] = 0.5*log(ratio * ratio)
end
uwerr.(aux_en)
eff_en[i] = copy(aux_en)
......
......@@ -140,4 +140,33 @@ Computes the results of a linear interpolation/extrapolation in the y axis
"""
y_lin_fit(par::Vector{uwreal}, x::Union{uwreal, Float64}) = par[1] + par[2] * x
@doc raw"""
fit_routine(model::Function, ydata::Array{uwreal}, param::Int64=3)
Given a model function with a number param of parameters and an array of uwreal,
this function fit ydata with the given model and print fit information
The method return an array upar with the best fit parameters with their errors.
'''@example
@. model(x,p) = p[1] + p[2] * exp(-(p[3]-p[1])*x)
fit_routine(model, ydata, param=3)
"""
function fit_routine(model::Function, ydata::Array{uwreal}, param::Int64=3)
yval = value.(ydata)
yer = err.(ydata)
xdata = collect(1:length(ydata))
chisq = gen_chisq(model, xdata, yer)
fit = curve_fit(model, xdata, yval, 1.0 ./ yer.^2, fill(0.5, param))
upar, chi_exp = fit_error(chisq, coef(fit), ydata)
for i = 1:length(upar)
uwerr(upar[i])
print("\n Fit parameter: ", i, ": ")
details(upar[i])
end
println("Chisq / chiexp: ", chisq(coef(fit), ydata), " / ", chi_exp, " (dof: ", dof(fit),")")
return upar
end
function gen_chisq(f::Function, x::Vector{Int64}, err::Vector{Float64})
chisq(par, dat) = sum((dat .- f(x,par)).^2 ./err.^2)
return chisq
end
#TODO: add combined fits
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment