Commit 3254829a authored by Javier's avatar Javier

Merge branch 'rearrange-linalg'

parents 241323d9 c20a2ce7
......@@ -9,7 +9,7 @@ include("juobs_tools.jl")
include("juobs_obs.jl")
export read_mesons, read_ms1, read_ms, read_md, truncate_data!
export get_matrix, uwgevp_tot, energies, uwdot
export get_matrix, energies, uwdot, uweigvals, uweigvecs, uweigen, invert, getall_eigvals, getall_eigvecs
export corr_obs, md_sea, plat_av, lin_fit, x_lin_fit, y_lin_fit, fit_routine
export meff, dec_const_pcvc, comp_t0
......
This diff is collapsed.
......@@ -73,7 +73,7 @@ end
read_mesons(path::String, g1::Union{String, Nothing}=nothing, g2::Union{String, Nothing}=nothing; id::Union{Int64, Nothing}=nothing)
read_mesons(path::Vector{String}, g1::Union{String, Nothing}=nothing, g2::Union{String, Nothing}=nothing; id::Union{Int64, Nothing}=nothing)
This faction read a mesons dat file at a given path and returns a vector of CData structures for different masses and Dirac structures.
This function read a mesons dat file at a given path and returns a vector of CData structures for different masses and Dirac structures.
Dirac structures g1 and/or g2 can be passed as string arguments in order to filter correaltors.
ADerrors id can be specified as argument. If is not specified, the id is fixed according to the ensemble name (example: "H400"-> id = 400)
......
......@@ -247,6 +247,14 @@ fit_routine(model::Function, xdata::Array{uwreal}, ydata::Array{uwreal}, param::
Given a model function with a number param of parameters and an array of uwreal,
this function fit ydata with the given model and print fit information
The method return an array upar with the best fit parameters with their errors.
The flag wpm is an optional array of Float64 of lenght 4. The first three paramenters specify the criteria to determine
the summation windows:
vp[1]: The autocorrelation function is summed up to t = round(vp[1]).
vp[2]: The sumation window is determined using U. Wolff poposal with S_\tau = wpm[2]
vp[3]: The autocorrelation function Γ(t) is summed up a point where its error δΓ(t) is a factor vp[3] times larger than the signal.
An additional fourth parameter vp[4], tells ADerrors to add a tail to the error with \tau_{exp} = wpm[4].
Negative values of wpm[1:4] are ignored and only one component of wpm[1:3] needs to be positive.
'''@example
@. model(x,p) = p[1] + p[2] * exp(-(p[3]-p[1])*x)
@. model2(x,p) = p[1] + p[2] * x[:, 1] + (p[3] + p[4] * x[:, 1]) * x[:, 2]
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment