Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
J
juobs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Javier Ugarrio
juobs
Commits
ffca5cf0
Commit
ffca5cf0
authored
Mar 07, 2024
by
ale
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug pvalue
parent
66634ada
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
92 deletions
+0
-92
src/juobs_tools.jl
src/juobs_tools.jl
+0
-92
No files found.
src/juobs_tools.jl
View file @
ffca5cf0
...
...
@@ -1731,95 +1731,3 @@ function pvalue(chisq::Function,
return
Q
end
function
pvalue
(
chisq
::
Function
,
chi2
::
Float64
,
xp
::
Vector
{
Float64
},
data
::
Vector
{
uwreal
};
wpm
::
Union
{
Dict
{
Int64
,
Vector
{
Float64
}},
Dict
{
String
,
Vector
{
Float64
}},
Nothing
}
=
Dict
{
Int64
,
Vector
{
Float64
}}(),
W
::
Union
{
Vector
{
Float64
},
Array
{
Float64
,
2
}}
=
Vector
{
Float64
}(),
nmc
::
Int64
=
5000
)
n
=
length
(
xp
)
# Number of fit parameters
m
=
length
(
data
)
# Number of data
xav
=
zeros
(
Float64
,
n
+
m
)
for
i
in
1
:
n
xav
[
i
]
=
xp
[
i
]
end
for
i
in
n
+
1
:
n
+
m
xav
[
i
]
=
data
[
i
-
n
]
.
mean
end
ccsq
(
x
::
Vector
)
=
chisq
(
view
(
x
,
1
:
n
),
view
(
x
,
n
+
1
:
n
+
m
))
if
(
n
+
m
<
4
)
cfg
=
ForwardDiff
.
HessianConfig
(
ccsq
,
xav
,
ADerrors
.
Chunk
{
1
}());
else
cfg
=
ForwardDiff
.
HessianConfig
(
ccsq
,
xav
,
ADerrors
.
Chunk
{
4
}());
end
hess
=
Array
{
Float64
}(
undef
,
n
+
m
,
n
+
m
)
ForwardDiff
.
hessian!
(
hess
,
ccsq
,
xav
,
cfg
)
cse
=
0.0
Q
=
dQ
=
0.0
if
(
m
-
n
>
0
)
if
(
length
(
W
)
==
0
)
Ww
=
zeros
(
Float64
,
m
)
for
i
in
1
:
m
if
(
data
[
i
]
.
err
==
0.0
)
#isnothing(wpm) ? wuerr(data[i]) : uwerr(data[i], wpm)
uwerr
(
data
[
i
],
wpm
)
if
(
data
[
i
]
.
err
==
0.0
)
error
(
"Zero error in fit data"
)
end
end
Ww
[
i
]
=
1.0
/
data
[
i
]
.
err
^
2
end
else
Ww
=
W
end
#cse = chiexp(hess, data, Ww, wpm)
m
=
length
(
data
)
n
=
size
(
hess
,
1
)
-
m
hm
=
view
(
hess
,
1
:
n
,
n
+
1
:
n
+
m
)
sm
=
Array
{
Float64
,
2
}(
undef
,
n
,
m
)
if
typeof
(
Ww
)
==
Array
{
Float64
,
2
}
for
i
in
1
:
n
,
j
in
1
:
m
sm
[
i
,
j
]
=
hm
[
i
,
j
]
.*
sqrt
(
inv
(
Ww
))[
i
,
j
]
end
elseif
typeof
(
Ww
)
==
Vector
{
Float64
}
for
i
in
1
:
n
,
j
in
1
:
m
sm
[
i
,
j
]
=
hm
[
i
,
j
]
/
sqrt
.
(
Ww
[
j
])
end
end
maux
=
sm
*
sm
'
hi
=
LinearAlgebra
.
pinv
(
maux
)
Px
=
-
hm
'
*
hi
*
hm
for
i
in
1
:
m
Px
[
i
,
i
]
=
Ww
[
i
]
+
Px
[
i
,
i
]
end
C
=
cov
(
data
)
nu
=
sqrt
(
C
)
*
Px
*
sqrt
(
C
)
N
=
length
(
nu
[
1
,
:
])
z
=
randn
(
N
,
nmc
)
eig
=
abs
.
(
eigvals
(
nu
))
eps
=
1e-14
*
maximum
(
eig
)
eig
=
eig
.*
(
eig
.>
eps
)
aux
=
eig
'
*
(
z
.^
2
)
Q
=
1.0
-
juobs
.
mean
(
aux
.<
chi2
)
x
=
chi2
.-
eig
[
2
:
end
]
'
*
(
z
[
2
:
end
,
:
]
.^
2
)
x
=
x
/
eig
[
1
]
#dQ = juobs.mean((x .> 0) .* exp.(-x * 0.5) * 0.5 ./ sqrt.(abs.(x)))
#dQ = err(cse)/value(cse) * dQ
end
return
Q
#uwreal([Q,dQ],"")
end
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment