"A quick web search point us to the `urllib` python module and to a very simple retrival procedure."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -281,6 +389,33 @@
"Let's take a look at the [SciPy Fast Fourier Transform module manual](http://docs.scipy.org/doc/scipy/reference/tutorial/fftpack.html), and straight from there...\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -288,6 +423,24 @@
"In order to construct a periodogram, i.e. a graph of power vs. frequency, we first compute the power of the FFT signal which is simply the **FFT signal squared**. We only need the part of the signal ranging from zero to a frequency equal to the Nyquist frequency, which is equal to half the maximum frequency, since frequencies above the Nyquist frequency correspond to negative frequencies. The frequency range is calculated from 0-N/2 as N/(2T) where N is the number of samples and T is the sampling time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -295,6 +448,24 @@
"Which in years becomes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -302,6 +473,15 @@
"### Solar spots period"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
...
...
@@ -316,6 +496,24 @@
"After doing the exercise, while looking for information, I found that scipy allows us to directly compute the periodgram with [`scipy.signal.periodgram`](http://scipy.github.io/devdocs/generated/scipy.signal.periodogram.html)"