Add code cells placeholders

parent 32073b2b
......@@ -18,6 +18,15 @@
"First let's import the neccesary modules:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
......@@ -43,6 +52,15 @@
"$$y = \\tan(x), \\; x\\in[0., 4\\pi]$$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -57,6 +75,15 @@
"$\\theta(\\rho) = 2\\pi \\rho, \\; \\rho \\in [0, 2]$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -82,7 +109,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 1,
"metadata": {
"collapsed": false
},
......@@ -122,7 +149,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 2,
"metadata": {
"collapsed": false
},
......@@ -151,6 +178,15 @@
"* Then try using for your real problem."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -171,6 +207,15 @@
"* Define the function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -178,6 +223,15 @@
"* randomize data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -185,6 +239,15 @@
"* plot"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -192,6 +255,15 @@
"* Look for fit scipy module and fit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -199,6 +271,15 @@
"* plot result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -219,7 +300,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 3,
"metadata": {
"collapsed": false,
"scrolled": true
......@@ -231,7 +312,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 4,
"metadata": {
"collapsed": false
},
......@@ -272,6 +353,33 @@
"A quick web search point us to the `urllib` python module and to a very simple retrival procedure."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -281,6 +389,33 @@
"Let's take a look at the [SciPy Fast Fourier Transform module manual](http://docs.scipy.org/doc/scipy/reference/tutorial/fftpack.html), and straight from there...\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -288,6 +423,24 @@
"In order to construct a periodogram, i.e. a graph of power vs. frequency, we first compute the power of the FFT signal which is simply the **FFT signal squared**. We only need the part of the signal ranging from zero to a frequency equal to the Nyquist frequency, which is equal to half the maximum frequency, since frequencies above the Nyquist frequency correspond to negative frequencies. The frequency range is calculated from 0-N/2 as N/(2T) where N is the number of samples and T is the sampling time."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -295,6 +448,24 @@
"Which in years becomes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -302,6 +473,15 @@
"### Solar spots period"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......@@ -316,6 +496,24 @@
"After doing the exercise, while looking for information, I found that scipy allows us to directly compute the periodgram with [`scipy.signal.periodgram`](http://scipy.github.io/devdocs/generated/scipy.signal.periodogram.html)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment